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1 Automatizability

Automatizability is concerned with how efficiently proofs can be found in a given propositional proof
system, P. Note that hard-to-refute unsatisfiable CNFs may require superpolynomial-size refutations,
and this motivates the following property of a proof system P. Informally P is automatizable if there is
an algorithm A such that given as input an unsatisfiable CNF F', A outputs a P-refutation of F' in time
polynomial in the size of the shortest P refutation.

Definition 1 (Automatizability). A proof system P is (polynomially) automatizable if there exists an
algorithm A such that for all unsatisfiable CNF formulas F given as input to A, A(F) outputs a P-
refutation of F', and the runtime of A on F is polynomial in the size of the minimum P proof of F.

1.1 Remarks

An automatizable proof system is obviously desirable for SAT-solving and automated theorem proving,
especially if the proof system in question is fairly strong. It has been shown that tree-like Resolution
is automatizable in quasi-polynomial-time, and dag-like Resolution is automatizable in sub-exponential
time. We will see later in the course that many algebraic and semialgebraic proof systems (Sherali-Adams,
Sum-of-Squares, Nullstellensatz, Polynomial Calculus) are degree automatizable, meaning that refutations
O where d is the minimal degree of the refutation. Of these
systems, Sum-of-Squares (SOS) is the most powerful, and we will see later that degree-automatizability

in these systems can be found in time n

of SOS has been exploited to give new approximation algorithms for a variety of distributional learning
problems.

We note that there is another more relaxed notion of automatizability, called weak automatizability.
A proof system P is weakly automatizable if there is a Cook-Reckhow proof system P’ and an algorithm
A such that for any unsatisfiable CNF formula F', A returns a P’-refutation of F', and moreover A(F)
runs in time polynomial in the size of the shortest P-refutation of F. It is an open problem whether or
not Resolution is weakly automatizable. We note that the difference between automatizable and weakly
automatizable is analogous to the difference between proper learnability and learnability.

2 Feasible Interpolation

In this section, we define the notion of feasible interpolation, which is connected to automatizablity.

Consider an unsatisfiable CNF formula of the form A(Z, 2) A B(¥, Z), where A is a CNF formula over
the variables &, 2, and similarly B is a CNF formula over the variables i, 2. We think of the variables 2’
as shared, and the variables ¥ (respectively %) as private to A (B respectively). A CNF formula of this
type is called a “split” formula.



Observation 2. If f is unsatisfiable, then it must be true that for any assignment & for zZ, either A(Z, d)
or B(y,d) must be unsatisfiable.

Definition 3 (Interpolant Function). An interpolant function is a function that on input an assignment
a to the shared variables, says which of the two CNFs, A(Z,d), or B(y,d) is unsatisfiable. Note that
both can be unsatisfiable, in which case an interpolant function can give either as a legal answer. This
leads to the following definition of an interpolant function associated with a CNF' of this form.

Let A(%,Z) A B(4, Z) be unsatisfiable. An interpolant function, farp for this CNF formula takes as
input an assignment & for Z, and satisfies:

1 if A(Z,d) is SAT
farg(@) =< 0 if B(ij,d) is SAT

*  otherwise

Note that in this definition, farp(&@) = 0 means that A(Z, @) must be unsatisfiable. Similarly, when
fans(@) =1, B(¥,d) has to be unsatisfiable.

Definition 4 (Feasible Interpolation). P has feasible interpolation if for every unsatisfiable split formula
A(Z,2) N B(y, ), there is a circuit C(&) that computes farp. Furthermore, the size of C is polynomial
in the size of the shortest P-refutation of AN B.

Definition 5 (Monotone Feasible Interpolation). P has monotone feasible interpolation if for every
unsatisfiable split formula A(Z,Z) N B(Y, Z) where Z occur only negatively in B and positively in A, then
there exists a monotone circuit C that computes farp and the size of C' is polynomial in the size of the
shortest P-refutation of AN\ B.

3 Automatizability and Feasible Interpolation

Next we relate automatizability and feasible interpolation.

Theorem 6 ([BPROO0]). For any propositional proof system P, if P is automatizable, P has the feasible
interpolation property.

Proof. Suppose that A(Z,2) A B(y, Z) has a P-refutation w. The circuit C' computing the interpolant
function faap runs as follows:

On input @, run the automatization algorithm for |7| steps on A(Z,&). If it outputs a
refutation, output 0 (indicating that A(Z, @) is unsatisfiable); otherwise, output 1 (indicating
that B(y, 2) is unsatisfiable).

The correctness of the algorithm is based on the following observation: if B(¥, @) is satisfiable, suppose
that 7 is a satisfying assignment to ¢, our split formula under the restriction ¢ < 7 becomes A(Z, &) A
B(p,d) = A(Z,d) A 1. Therefore, the original proof m restricted to this assignment 7|z g g 5 gives a
refutation of A(Z, d). O



4 Proof System: Cutting Planes

In this section, we study the Cutting Planes proof system, and prove that it has feasible interpolation.
Then we will use this property to prove exponential lower bounds for Cutting Planes proofs.

Cutting Planes is a refutation system used for proving unsolvability of systems of linear inequalities
where the variables are z1,...,x, € Z.

Definition 7 (Cutting Planes Refutations). Let A € Z™*™ and b € Z™. Let Ax > b be the system of
integer linear inequalities {ay - x > by,ag - & > ba, ..., am - x > by} where ay,...,ay, are the row vectors
of A.

A Cutting Planes (CP) refutation of Az > b is a finite sequence of inequalities such that each line
(inequality) either is one of the original inequality a;-x > b; or follows from previously derived inequalities
by an application of one of the CP inference rules. The goal of CP is to derive the inequality 0 > 1 from
the initial set of inequalities, showing that the initial set of inequalities is unsatisfiable over the reals.

The rules are as follows:

(Division Rule) From a line a-x > ¢ and an interger d dividing every integer in a, we have:

a-r>c
(Division)
-z >[g]

Q

(Non-Negative Linear Combination Rule) From two lines a-x > ¢ and b-x > d, we have for
any non-negative integers o, f > 0:

a-xr>c b-x>d

(a4 Bb) - x > ac+ pd

(Linear combination)

Remark 1. To refute a CNF F = C1 ANCy A --- AN Cy,, we must first convert each clause to a linear
inequality. For example, consider the clause C = x1 V —xg V x3; this converts to the inequality: x +
(1 —x2) + 3 > 1. In addition to the inequalities associated with each clause C;, we additional add 2n
additional inequalities that force the values of all variables to be in [0,1]: {x; > 0,—x; > —1|i € [n]}.

Remark 2. The linear combination rule is sound even over R. However the division rule will preserve
only integer solutions.

Remark 3. For refuting CNFs, we can assume without loss of generality that all coefficients have mag-
nitude at most 2. Therefore, each line can be encoded using poly(n) bits, so the size of a refutation can
be measured by the number of lines (inequalities) in the CP refutation.

Remark 4. One can easily check that CP is sound. We will show in Theorem 8 that it p-simulates
Resolution, so is also complete.

4.1 Cutting Planes vs. Resolution

Cutting Planes is a natural proof system that generalizes Resolution. This is formalized by the next
theorem.

Theorem 8. CP p-simulates Resolution.



[Tianqi: I rewrote this proof. Pls take a look.]

Proof. The idea is to replace every application of the Resolution rule with a CP proof. Recall that a
literal is either a variable or its negation. For convenience, for any literal p, let f(p) be the function

afon =

11—z, p=—uy

For each clause C' = p1 V --- V pg, where py,...,py are literals, let f(C) = f(p1) + ... f(px). Then each
such clause is converted to the linear inequality f(p1) + ... f(pr) > 1.

Let C £ piV---Vpr, D2 g V---Vq where pi,...,pp,q1,-..,q are all literals. Consider the following
application of the Resolution rule:

CVzx; DV —x;

(Resolution)
CcvD

We now show that f(C)+x; > 1, f(D)+1—ax; > 1tcp f(CV D) >1.

The key idea is shown in the example in Figure 1. We assume that there is not variable x; having
positive occurrence in one of C' and D and negative occurrence in the other, or the disjunction C'V D
will be trivially valid. Let C vV D £V ...r,, be the disjunction of C' and D with repeated occurrences
contracted.

l—21+220+242>1 x3 >0

x1+x2+a3>1 2420
e ! (Addition)

(Addition)

(Addition)
T1+To+x3+ 148 21 l—z1+z2+a3+742>1

209 +2x3 + 224 > 1

To+x3+x4 21

(Division)

x1 VoV s —x1VIaVxy

23V 23V 2 using CP rules.

Figure 1: Example of simulating

The first step is to weaken f(C)+ z; > 1 to f(C'V D)+ x; > 1. Note that for each literal p, we
have f(p) > 0 being one of the initial inequalities. So for any literal ¢; in D but not in C, we apply the
addition rule once with f(g;) > 0 to get f(C) + f(¢;) + ; > 1. f(CV D)+ x; > 1 can be obtained by

repeating this rule.
Similarly, we can weaken f(D)+1—x2; > 1to f(CV D)+ 1—x; > 1. Then,

fCvD)+z;>1  f(CVD)+1—x;>1
2f(CvD)>1
f(CvD)>1

(Addition)

(Division)

In order to simulate Resolution with CP, we simply apply the above conversion to each application of
the Resolution rule. Since each step can be simulated in CP’s by a constant number of steps, it follows
that any Resolution refutation can be simulated by a CP refutation of size polynomial in the size of the



Resolution refutation. O

Recall that the pigeon-hole principle requires exponential-size Resolution proofs. The following theo-
rem shows that on the other hand, Resolution cannot p-simulate Cutting Planes.

Theorem 9. The Pigeonhole Principle (PHP) ;) has polynomial-size CP refutations.

Corollary 10. Resolution does not p-simulate CP.

[Tianqi: I rewrote this proof. Pls take a look.]

Let us recall the initial clauses for PH P ;:
(Pigeon clauses) Vi€ [n]: (P1VPiaV...V P,

(Hole clauses) Vj e [n—1]: (PijV P V...V Pyj);
Vi#id €[n],j€n—1]:(=Py;V-Py;)

The key lemma for proving Theorem 9 is to derive the hole inequalities Py j + P j 4 ...+ P, ; <1
for all j € [n — 1], which means that each hole can only hold at most one pigeon. Similarly we need to
derive the pigeon inequalities P;1 V PioV ...V P;,—1 > 1 for all ¢ € [n].

Lemma 11. For each j € [n — 1], the following inequality can be derived from PHP) ,:
Pi+Pj+...+P,; <1
Lemma 12. For each i € [n], the following inequality can be derived from PHP) ,:
Pi+Po+...+Pp1>1.
We first prove Theorem 9 from Lemmas 11 and 12.
Proof of Theorem 9 from Lemma 11. The proof has 5 steps.

1. Derive the hole inequalities Py j + P + ...+ P, ; < 1 using Lemma 11.

2. Derive the pigeon inequalites using Lemma 12.

w

. Sum up all equations from step (1). This will give us

> Pyj<n-1

i€[n],j€[n—1]

4. Sum up all equations from step (2). This will give us

Z P >n.

i€[n],j€[n—1]

5. Summing up the inequalities we get from steps (3) and (4) gives us 0 > 1.



O]

What remains is to prove Lemmas 11 and 12. We prove Lemma 11 below; the proof of Lemma 12 is
similar.

Proof of Lemuma 11. We prove Py j+Ps j+---+P, ; < 1 by induction over n’. When n’ = 2, the inequality
is exactly one of the hole clauses. We now show Py ; + -+ Py < 1from P+ -+ Py ; <1 for
any 2 <n/ <n.

The first step is to sum up P;j + Pyry1; < 1 for all 1 <4 <n' and get

!

n
Y P+ Py, <n (1)
i=1
Then,
: (1H)
Equation (1) Z”; Pi<1
- L (Multiplication)

/ /
i P+ Py <’ (n' =13 Py <n/ =1

(Addition)
WP <on/— 1
o (Division)

n/4+1
Zi:l Pi,j <1

4.2 Exponential Lower Bounds for CPs using Feasible Interpolation

In this section we prove an exponential lower bounds for CP using feasible interpolation.
The overview of the proof is as follows. First, we show that CPs has monotone feasible interpolation.
In particular, for any unsatisfiable split formula, F' = A(Z, 2) A B(Y, Z) we have:

1. If F has a polynomial-size CP refutation where all coefficients are small (the length of all coefficients
in binary is O(polylog(n)), then there is a polynomial-size monotone circuit for computing the
interpolant function;

2. And if F has a polynomial-size CP refutation without any bound on the coefficient length (recall
that the coefficient can be encoded by at most poly(n) bits without loss of generality), then there
is a polynomial-size monotone real circuit for computing the interpolant function.

A monotone real circuit is a generalization of a monotone circuit, given by the following definition.
We note that to get the main idea behind the CP lower bound, the reader should focus on the simpler
case where the coefficients are bounded in length (case 1 above).

Definition 13 (Monotone Real Circuit). A monotone real circuit for f: {0,1}" — {0,1} is a sequence
of functions g1, ...,gs where gs = f and for all i < s, g; satisfies at least one of these conditions: g; = x;
or there is a monotone real function ® : R x R = R, and j, k < i such that g; = ®(g;, gx)-



We prove below the special case corresponding to (1) above. Consider an unsatisfiable split CNF
formula F' = A(Z, Z) A\ B(y, Z) that is monotone with respect to Z. Let m be a CP refutation of F', where
all coefficients in 7 have length at most polylog(n). Given an assignment & to the Z’ variables, we want to
show that there exists a monotone circuit C'(&), of size polynomial in the size of 7, that outputs farp(d).

Theorem 14. There is a polynomial-sized circuit C(d) that outputs farp(d).

Proof. Let @ be an assignment to the variables 2. We want to show that for each line f(Z)+g(7)+h(a) > D
in 7, there exists Dy and D;, where Dy + D1 > D — h(@) such that, in Cutting Planes, we can derive
f(&) > Dy from A(Z, @) and g(y) > D, from B(y, &). We prove this by induction on the size of the proof.

(Base case) This is trivially true for the initial clauses (when the proof has size 1).

(Linear combination) Suppose that the j* line of the proof is derived from the following two previously
derived inequalities by the linear combination rule

f@) +91(H) +hi(@) >C fo@) + g2(9) + ha(d@) > D
B (f1(Z) + 91(¥) + h1(Q)) + v (f2(Z) + g2(¥) + ha(d)) > BC + D

(Linear combination)

By the induction hypothesis, we have the following linear inequalities

fi(@) > Coy, gi1(y) >C1 where Cy+ Cy > C — hi(d),
f2(Z) > Doy, g2(y) > Dy where Do+ Dy >D — hg(&),

where f1(Z) > Cy and f2(Z) > Dy are derivable from A(Z, @), and ¢1(y) > C; and g2(y) > D, are
derivable from B(¥, @).

From these inequalities, we can simply apply an addition rule and derive §f1(Z) + v f2(Z) > BCy +
Do and Bg1(¥) + vg2(¥) > BC1 + v D

(Division) Suppose that the j** line of the proof was derived via the division rule
f(@) +9()) + h(@) = D
i (f(@) +9(@) + 1(@) = [7]

By the induction hypothesis, there exists Dy and D; such that Do+ D1 > D — h(d) and f(Z) > Dy
and g(¢) > D are derivable from A(Z, @) and B(¥, @), respectively.

(Division)

Then we can apply the division rule to each of the inequalities and get

d@z |2 L= | 2]

21 [3]: [252]: [252)- 2]

The last equality follows from the fact that d divides all coefficients in h(d).

where

Thus we can obtain CP derivations of 0 > Dy from A(Z,d) and 0 > Dy from B(y,&). Since Dy > 1
or D; > 1, we have a refutation 0 > 1 from either A(Z, &) or B(¥,d&). So our algorithm A computes
Do + Dy and outputs 0 if Dy > 0 and 1 if Dy > 1. O



4.2.1 Lower Bounds for the Clique-Coclique Formula

Let us use everything we have learned so far and apply it to the Clique-Coclique formula.

Definition 15 (Clique). In graph theory, a clique is a subset of vertices within a graph where every
single vertex is directly connected to every other vertex in that subset.

Definition 16 (Coclique). A coclique is a set of vertices in a graph where no two vertices are connected
by an edge.

The Clique-Coclique formula is a split CNF formula defined as: F = Cliquey(Z, 2) A Colori_1(4, 2).
Here, Z encodes an undirected graph G = (V, E) where |V| = n. In particular, for any 1 < i < j < n,
z;; = 1 if and only if (4, j) € E. For simplicity, we let z; ; = z;; be the same variable. Z is a k x n matrix
encoding a clique of size k. Semantically, each row has exactly one 1, and the set of columns having 1’s
form the clique. ¥ is a (k — 1) x n) matrix, where yi,u = 1 if and only if the vertex u is assigned with
the i-th color. The two formulas are formally defined as the following.

Definition 17 (Clique(Z, 2)). Cliquex(Z, 2) is the conjunction of the following constraints:
(1) Vi€ [k : Vi @i

(2) Yi#j€[k],Yv e n]: 2,V xj,

(3) Yu#ven|,Vitjelkl:xiuV Tjo— Zup

Constraint (1) and (2) says that & defines a subset S C [n] of size k. Constraint (3) says that all edges
between clique vertices are in G.

Definition 18 (Colory_1(¥, 2)). Colory_1(¥, Z) is defined by the following constraints:
(1) Yu € [n]: Vi_1Yiv

(2) Yi#jek—1,Yuen|: iy VYju

(3) Yu#wven,Vielk—1]: Yy V YoV 2y

Constraints (1) and (2) say that i represents a legal coloring of n. Constraint (3) says that there is no
edge in G between vertices of the same color.

By construction we can define the following interpolant function:

1 if graph encoded by Z contains a k-clique
f(2) =< 0 if graph encoded by Z has a k — 1 coloring
* otherwise

The Clique-Coclique formula has two properties: minterm and maxterm, which will be used to cal-
culate the lower bounds of the formula.

Definition 19. For a fiz k, a minterm is a graph containing a k-clique and no other edges. A maxterm
is a mazximal graph that is (k — 1) colorable such that its vertices are partitioned into k — 1 groups and
E; ; = 1 if and only if vertices i and j belong to different groups.



Theorem 20 ([RAZ85]). Let k = \/n. Based on the construction of the formula and its min/max term
properties, any monotone circuit C that accepts all minterms and rejects all maxterms has size(QQ("e))
for some € > 0.

We now combine the lower bound in Theorem 20 and the feasible interpolation of CP in Section 4.2
to get an exponential lower bound for CP.

Theorem 21. Any CP refutation of the Clique-Coclique formula requires exponential size.

Proof. By monotone feasible interpolation for CP, a size(s) CP refutation implies a poly(s) size monotone
real circuit for separating k-cliques from (k — 1) colorable graphs for all k-values. However, by Razborov
[RAZ85] (for the low coefficient cases) and [HC99] (for the more general case of coefficients of length
poly(s)), monotone circuits for the clique-coclique formula requires size at least exp(n€). For k = /n,
this implies a 22(") lower bound on the size of CP refutations. O

5 Final Remarks and Further Research

For a long time the only lower bound for Cutting Planes was via monotone feasible interpolation, and
therefore only for split-form formulas. However, recent work by [FPPR22] and [HP17] proved exponential
lower bounds for random k-CNF's for £ = O(logn), by generalizing the feasible interpolation method for
arbitrary formulas. This leads to the open question of whether we can improve the lower bounds for
random kCNF's for k = O(1).

We note that for Resolution, exponential lower bounds were proven for random k-CNFs for £ = O(1)
by Chvétal and Szemerédi [CS88].
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