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Lecture 2: Resolution Lower Bounds Via The Pigeonhole Principle

Instructor: Toniann Pitassi Scribes: Leo Orshansky

1 Review: The Resolution Proof System

To start, we’ll give a brief review of Resolution, one of the most classic and heavily-studied proof systems,

which in the last lecture we proved to be sound and complete for refuting unsat CNF formulae. Today’s

lecture will be focused on proving exponential lower bounds in this proof system, but to start, let’s remind

ourselves of the definition:

Definition 1 (Resolution). A refutation in Res starts with a CNF formula f = C1 ∧C2 ∧ · · · ∧Cm, and

derives additional clauses with the following rule:

(A ∨ x), (B ∨ x̄)→ (A ∨B)

where both items on the left hand side were either clauses in f , or clauses derived from previous applica-

tions of the Res rule. A refutation is complete when the empty clause φ is derived. We sometimes refer

to the graph representation of a refutation, which is the DAG formed by having one node per clause,

and drawing each rule application with a directed edge from the parent clauses to the child clause. A

refutation is called tree-like if each clause is used in at most one application of the rule (and as such,

its graph representation is a tree).

Observation 2. A tree-like refutation of an unsat formula f corresponds to a decision-tree solution to

Searchf , where for an assignment x, Searchf (x) outputs a clause in f which is violated by x.

We will also define a game which plays out very similarly to the Res proof system, and can sometimes

help us better capture the behavior of (non-necessarily-tree-like) Res refutations.

Definition 3 (Prover-Delayer Game). The prover-delayer game for formula f takes place over a series

of rounds between a prover, P , and a delayer, D. P is trying to find a falsifying assignment to f , whereas

D is trying to stretch the game to as many rounds as possible. In each round, the players do the following:

1. The prover chooses a variable xi

2. The delayer chooses an assignment b ∈ {0, 1}, and tells the prover that xi = b

3. The prover may declare that f is falsified, or may choose to “forget” the assignment of a variable,

or may continue to the next round

Observation 4. There is a one-to-one correspondence between Res refutations of a formula f , and game

graphs for the prover-delayer game on f . Tree-like proofs correspond to game trees, and non-tree-like

structures correspond to prover strategies which are “forgetful”. This correspondence is pictured in Figure

1.
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Figure 1: Res resolution (left) and prover-delayer game graph (right) for the unsat CNF formula
f = x1 ∧ x2 ∧ (x̄1 ∨ x̄2 ∨ x3) ∧ (x̄3 ∨ x4) ∧ (x̄3 ∨ x̄4). The diamond-shaped behavior near the top of the
graph represents the prover forgetting the value of x4. Note that in each leaf, one of the clauses of the
original formula is falsified.

2 Resolution Lower Bounds

We will now turn our focus to proving that Res does not contain short proofs for all unsat formulae –

i.e. our goal is to find lower bounds on the size of a refutation for specific classes of formula. The class

we will first focus on is that of Pigeonhole Principle statements (defined shortly below), and the primary

technical step will be to lower bound the width of clauses in a refutation, which we define to be the

number of literals in the clause. The analysis will be in two parts.

1. Proving that width lower bounds → size lower bounds: through a restriction argument, we will

show that refutations with small size must also have small width throughout.

2. Proving width lower bounds: for Pigeonhole Principle refutations, we will show that there must

be at least one wide clause by reasoning about the particular constraints and axioms of those

formulae. We’ll later take a look at a more general proof technique for width lower bounds in

K-CNF refutations, which uses boundary expansion of clause-variable graphs.

2.1 Propositional Pigeonhole Principle

We will narrow our focus to a concrete family of unsat formulae on n variables, which we will call the

Pigeonhole Principle statements.

Definition 5. The Pigeonhole Principle statement with n+1 pigeons and n holes, denoted with PHPn+1
n ,
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is the following CNF formula over variables Pi,j (with i ∈ [n+ 1] and j ∈ [n]):

PHPn+1
n =

n+1∧
i=1

(Pi,1 ∨ · · · ∨ Pi,n)︸ ︷︷ ︸
Pigeon clauses

∧
∧

i1<i2≤n+1
j≤n

(Pi1,j ∨ Pi2,j)

︸ ︷︷ ︸
Hole clauses (one-to-one)

∧
∧

i≤n+1
j1<j2≤n

(Pi,j1 ∨ Pi,j2)

︸ ︷︷ ︸
Functional

∧
n∧
j=1

(P1,j ∨ · · · ∨ Pn+1,j)︸ ︷︷ ︸
Onto

Here, each variable Pi, j represents the claim “pigeon i will sit in hole j”, as pictured in Figure 2.

We’ll briefly illustrate how this formula encodes the statement of the pigeonhole principle, section by

section:

1. The pigeon clause for pigeon i is the OR of Pi,1 . . . Pi,n. This says, “pigeon i must have some hole”.

2. The hole clause for hole j and a pair of pigeons i1, i2, is essentially the negation of Pi1,j ∧Pi2,j , thus

implying that those two pigeons cannot both sit in hole j. ANDed over all pairs of pigeons, this

says that hole j can contain at most one pigeon.

3. The “functional” clause for pigeon i and a pair of holes j1, j2 is similar to a hole clause, but with

the reverse statement: that the pigeon cannot sit in both holes at once. ANDed over all pairs of

holes and all pigeons, this says that we have a mapping from pigeons to holes.

4. The “onto” clause for hole j says that at least one pigeon will sit in it. ANDed over all holes, (and

combined with the previous), this says that we have a surjective mapping from pigeons to holes.

We note that the last two groups of clauses are optional, in the following sense. Clearly the formula is

unsat just with the pigeon clauses and hole clauses by, well, the pigeonhole principle. Since the additional

clauses are being ANDed with an unsat formula, any assignment that falsified the original formula will

also falsify the combined formula, and so they are making it strictly “more unsat”. However, there is

also a sense in which they make it “less unsat” – if a pigeon can only be mapped to one hole, and every

hole is mapped to by some pigeon, we guarantee that there is exactly one collision in the mapping, which

seems to bring us closer to finding a (still nonexistent) injection from pigeons to holes. We will later see

how this is useful for the proof.

Observation 6. Any refutation for PHPn+1
n (without the functional/onto clauses) is also a refutation

for the full PHPn+1
n . Thus, if s(n)-size refutations are possible for the former, then they are also possible

for the latter.

Pigeon 1 Pigeon 2 Pigeon 3 Pigeon 4 Pigeon 5

Hole 1 Hole 2 Hole 3 Hole 4

P1,1 P2,2 P3,3

P4,4 P5,3

Figure 2: The pigeonhole principle, with corresponding literals in PHP5
4 indicated
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Corollary 7. Proving Ω(s(n)) lower bounds for the “raw” pigeonhole principle formula on n+1 pigeons,

without the functional or onto clauses, reduces to proving Ω(s(n)) lower bounds on PHPn+1
n .

2.2 Warm-Up: Tree-Like Res Lower Bounds for PHPn+1
n

Before we go into proving that PHPn+1
n requires exponentially large Res refutations, we will show a much

simpler proof of the fact that this is true for the sub-class of tree-like Res refutations.

Actually, even before we do this, let’s consider a naive upper bound for a tree-like refutation of

PHPn+1
n . Recall that tree-like refutations are in one-to-one correspondence with decision trees for Searchf ,

so let’s try to construct a decision tree which solves SearchPHPn+1
n

. At the root of the tree, we’ll start by

querying for the location of pigeon 1 – if P1,1 is true then we’ve found it in hole 1, but if not we ask for

P1,2, and so on until we’ve asked down to P1,n, where if the answer is no then we can reject with the

first pigeon clause. The key observation now is that at each location in the tree where we’ve “found”

pigeon 1 in hole j, we can start solving the subproblem of placing pigeons 2 . . . n+ 1 in holes [n] \ {j} (an

instance of PHPnn−1) – and recursing down all the way until PHP2
1 where we reject on the corresponding

hole clause. Since at each recursive level we have O(n) nodes, and create O(n) recursive subproblems,

this decision tree has O(nn) = 2O(n logn) nodes.

Theorem 8. Any decision tree solving SearchPHPn+1
n

requires 2Ω(n) size.

Proof. We will start by introducing a helpful subset of assignments, which we will call the critical assign-

ments.

Definition 9 (Critical Assignments). For PHPn+1
n , an assignment x to the variables Pi,j is called i-

critical if it satisfies all clauses besides the ith pigeon clause. In other words, an i-critical assignment

finds a hole for the n pigeons besides i, and leaves pigeon i unmapped. Note that there are n! critical

assignments for each i, so (n+ 1)! in total.

Lemma 10. Any decision tree for SearchPHPn+1
n

that gives correct answers for all critical assignments

has size at least 2n.

Proof. Induction on n. For n = 1, clearly at least 2 nodes are required since the function is not constant

(we could violate either one of the pigeon clauses). For n > 1, assume that the claim is true for n − 1.

Then, consider what happens when we query the value of Pi,j at the root of our decision tree T .

If we see a 1, then we know that pigeon i goes to hole j, and the subtree S1 rooted at this node is

now a decision tree for the problem PHPnn−1. Take a critical assignment x for PHPnn−1, and assume that

S1(x) is an incorrect answer for the search problem. Then, x plus Pi,j = 1 is a critical assignment for

PHPn+1
n , and T (x) = S1(x) is once again wrong. So by the inductive hypothesis, S1 must have size at

least 2n−1 for T to be correct on all critical assignments.

If Pi,j is instead taken to be zero, then we can imagine that pigeon i is mapped to k for an arbitrary

k 6= j. We can then extend the exact same argument as in the case above, where a critical assignment

on n pigeons plus Pi,k = 1 is also critical for PHPn+1
n , to prove that S0 must have size at least 2n−1 for

T to be correct on all critical assignments.

T has two subtrees of size 2n−1, so its size must be at least 2n.

The theorem follows immediately, since a solution to SearchPHPn+1
n

must be correct on all assignments,

and in particular, all critical assignments.
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Figure 3: (a) Starting clauses of the monotone resolution refutation (pigeon clauses). (b) An example
of the monotone resolution applied, in this case on the third row, or hole 3. (c) Example of a Res step
transformed into a monotone resolution step. Note that on the bottom, we are not applying the monotone
resolution rule – just translating the derived clause to a monotone clause.

Exercise 11. Remove the gap between the upper and lower size bounds for tree-like refutations of PHPn+1
n .

2.3 Resolution Lower Bounds for PHPn+1
n (The General Case)

In this subsection we will prove that all Res refutations for PHPn+1
n require size exponential in n, not

just tree-like ones as shown previously. This will require substantially more work, and so we’ll split it

into sections roughly as outlined at the beginning of Section 2.

2.3.1 Monotone Transformation of PHPn+1
n

We’ll start by transforming Res refutations of PHP into a nice combinatorial form. Once we prove that

the transformed refutations are equivalent logically, and have the same asymptotic size, we can go on to

achieve lower bounds against the size of Res refutations by proving lower bounds against the transformed,

nicer version. All definitions are given below, but there is also a standard visual interpretation through

matrices, which is pictured in Figure 3. In this representation, there is one matrix cell per variable Pi,j ,

and the row/column indices are flipped such that each row is a hole and each pigeon is a column. As

such, there is one more column than row.

Definition 12 (Monotone Resolution for PHPn+1
n ). A monotone resolution refutation of PHPn+1

n starts

with the n+ 1 pigeon clauses, which are all monotone. Additional clauses are derived using the following

rule, which is parameterized by a particular hole j:

C1, C2 →
∨

({Pi,k : Pi,k ∈ C1 ∪ C2, k 6= j} ∪ {Pi,k : Pi,k ∈ C1 ∩ C2, k = j})

In simple terms, when the monotone resolution rule for hole j is applied to C1 and C2, the resulting

disjunction contains all variables outside of hole j from either clause, but only contains variables for hole

j if they were contained in C1 and C2. Intuitively, this rule encodes the fact that an assignment can

satisfy C1 and C2 either by variables outside of hole j (in which case the resulting clause is satisfied by

the inclusion of those variables), or by the same variable Pi,j (by one-to-oneness of PHPn+1
n ).
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Definition 13 (Clause Transformation from Res to Monotone). For a given clause c =
m∨
k=1

lk (where

literals lk are variables in PHPn+1
n or their negations), the transformed monotone version of c is given

as follows:

M(c) =
∨(
{Pi,j : ∃k. lk = Pi,j} ∪ {Ph,j : ∃k. ∃i 6= h. lk = Pi,j}

)
In other words, M(c) is the disjunction over:

• All positive variables Pi,j in c

• For any negated variable Pi,j (stating that pigeon i does not go into hole j) in c, we add all other

variables in the onto clause for hole j, to the disjunction. This essentially says “some pigeon that

isn’t i will go into hole j”.

Claim 14. Any size-s Res refutation π of PHPn+1
n can be transformed into a monotone resolution refu-

tation of size O(s).

Proof. A full proof will not be given, but a sketch is as follows: let’s ignore the fact that the monotone-

transformed initial clauses of π are not all legal starting clauses in the monotone resolution system (only

the pigeon clauses are allowed). Next, we want to show that a monotone-transformed clause is logically

equivalent to its precursor, given the pigeonhole axioms. This can easily be done by inspection, as

illustrated in a note above. Finally, we simply need to convince ourselves that for any rule application

C1, C2 → C3 in π, M(C3) can be derived from M(C1) and M(C2) using the monotone resolution rule at

most a constant number of times. Once this is done, and the problem of initial clauses is fixed, the claim

will follow.

Now that we have a size-preserving transformation, we now know that lower bounds on monotone refu-

tations of PHPn+1
n are sufficient to achieve our overall goal.

2.3.2 PHP Lower Bound for Monotone Refutations

Observation 15. Loosely speaking, a reason that we should expect monotone refutations of PHPn+1
n to

be large is that, to get from the initial set of clauses to the empty clause, we need to reduce the number of

holes represented from n to 0, but the monotone resolution rule only allows us to “clear” one hole at a

time. Additionally, clearing the kth hole would seem to require a large amount of clauses with k− 1 holes

cleared – this is because as each holes is cleared, the resulting clauses must each have at least one more

pigeon represented than in the previous step. Once there are many pigeons per clause, more combinations

of clauses from the previous layer are needed in order to clear all variables from hole k. Overall, we expect

to need roughly n layers with O(
(
n
k

)
) clauses in the kth layer, which is a total size exponential in n.

Motivated by the above observation, we prove the formal lower bound.

Theorem 16. Any monotone refutation of PHPn+1
n must have size exp(Ω(n)).

Proof. We will proceed in two parts: as mentioned in the beginning of Section 2, we first prove that short

refutations must have narrow clauses, and then we prove that all refutations must have at least one wide

clause.

Take π to be a monotone refutation of PHPn+1
n .
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Lemma 17. If π has size s < 2n/20, then there is a restriction ρ mapping a constant fraction of pigeons to

holes (without violating any PHP axioms), such that π
∣∣
ρ

has no clauses of width greater than n(n+1)/10.

Proof. Let t = n(n+ 1)/10, and call a clause wide if its width (number of literals) is at least t. We will

iteratively construct a restriction ρ which eliminates all wide clauses from π, as follows:

Begin with ρ initially empty. If we pick a random variable Pi,j from among the ≤ n(n+ 1) variables

which are not yet restricted under ρ, then a given wide clause will contain that variable with at least

1/10 probability. Let w be the number of wide clauses in π
∣∣
ρ
. By linearity of expectation, the average

number of wide clauses which contain Pi,j is at least w/10. Take Pi∗,j∗ to be a choice of variable which

achieves this average, and add Pi∗,j∗ = 1 to the restriction ρ. Additionally, add Pi∗,j = 0 for j 6= j∗, and

Pi,j∗ = 0 for i 6= i∗. Repeat this procedure a total of log10/9 s+ 1 times, and then output ρ.

In each iteration, w decreases by a factor of at least 9/10. This means that after all iterations are

complete, w ≤ w0 · (9/10)log10/9 s+1 < w0/s ≤ 1, thus all wide clauses have been eliminated. Additionally,

the number of pigeons mapped by ρ is log10/9 < 1/3.

And now, to prove that π must have wide clauses:

Lemma 18. π contains a clause of width greater than 2n2/9.

Proof. Let the complexity of a clause c ∈ π be the minimum number of pigeon clauses which jointly

imply c on all critical assignments. Note that the complexity of each initial clause (a pigeon clause) is 1,

whereas the complexity of the final clause (the empty clause φ) is n+ 1.

We claim that for any monotone resolution rule application C1, C2 → C3, complexity(C3) ≤ complexity(C1)+

complexity(C2). This follows from the fact that all assignments which satisfy C1 and C2 must also satisfy

C3, which is exactly the soundness property of the monotone resolution proof system. As such, the clause

complexity at most doubles in each layer of the refutation, and we can in particular find some clause c∗

such that n/3 ≤ complexity(c∗) ≤ 2n/3. We now go on to show that c∗ is wide.

Let S ⊆ [n+ 1] be the minimal subset of pigeon clauses which implies c∗. As we know, n/3 < |S| <
2n/3. We now observe the following property which characterizes the set S:

• For any i ∈ S, there must be some i-critical assignment which falsifies c∗. This is because the

ith pigeon clause is violated only on the i-critical assignments (which concurrently satisfy all other

pigeon clauses), and so S \ {i} would be enough to imply c∗ on all critical assignments unless there

was a falsifying i-critical assignment.

• For any i 6∈ S, all i-critical assignments satisfy c∗. If not, then on the falsifying i-critical assignment,

all pigeon clauses in S would be satisfied, and as such would not imply the truth value of c∗.

With this in mind, take α to be an i-critical assignment which falsifies c∗, for some i ∈ S. Take any j 6∈ S,

and let l ∈ [n] be the hole which pigeon j is mapped to under the assignment α. We observe that by

modifying the values of just two variables in α, we can turn it into a j-critical assignment: we simply set

Pj,l = 0 and Pi,l = 1. By the property above, this assignment must satisfy c∗, and since c∗ is monotone,

we know that Pi,l must have been in the disjunction.

For a fixed i, we can repeat this reasoning for all j 6∈ S to find a distinct variable Pi,l in c∗, which

is n − |S| variables. But we can also vary i over all elements of S, and so we end up with a total of

|S|(n − |S|) distinct variables that must be in c∗. Since 2n/3 > |S| > n/3, we get that c∗ must contain

at least 2n2/9 variables.
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Finally, we can combine these two lemmata in a very straightforward way. Since π has a clause of

width 2n2/9, which is larger than n(n+ 1)/10, the contrapositive of Lemma 17 implies that π has total

size > 2n/20. In particular, it is clear that the size of π is exp(Ω(n)).

Corollary 19 (Resolution Lower Bound). Any Res refutation of PHPn+1
n has size exp(Ω(n)).

Proof. Follows from Claim 14 and Theorem 16.

3 Resolution Lower Bounds Beyond PHP

The main theorem proved in Section 2 showed us that monotone resolution (and, as a consequence, Res),

is not capable of producing short refutations of the pigeonhole principle statement. Naturally, we would

want to extend this to find more general classes of formulae for which Res does not have short refutations.

Just like in the technical proof of the lower bound, we can break this into two parts: a reduction from

size lower bounds to width lower bounds, and then the width lower bounds themselves.

3.1 General Size-Width Tradeoff

It turns out that general lower bounds can be proven on the size of Res refutations of a certain maximum

width, with a stronger tradeoff for tree-like refutations. In particular, we have the following result due

to Eli Ben-Sasson and Avi Wigderson.

Theorem 20 (BW01). Let F be an unsat k-CNF on n variables. Then,

1. Tree-Res-Size(F ) ≥ 2Res-Width(F )−k

2. Res-Size(F ) ≥ 2Ω((Res-Width(F )−k)2/n)

Clearly, if we had a way to get general width lower bounds on Res refutations, we could combine it

with this theorem to achieve very strong results. We will outline one such framework for width lower

bounds.

3.2 Width Lower Bounds From (Boundary) Expansion

Definition 21 ((Boundary) Expansion Property of Clause-Variable Graphs). Take a bipartite graph

G = (V = (L,R), E). Take |L| = m and |R| = n. We say that G is an (ε, δ)-expander (resp. boundary

expander) if for all subsets S ⊆ L such that |S| ≤ εn, |N(S)| ≥ δ|S|. Here, N(S) is the set of nodes in

V \ S with at least one neighbor (resp. exactly one neighbor) in S.

Lemma 22. If G is a good expander with sufficiently low degree, then G is also a good boundary expander.

In particular, if G is a (ε, δ)-expander with degree d, then it is a (ε, 2δ − d)-boundary expander.

Proof. Take a given left subset |S| ≤ εn. Let E = {v ∈ R : |N(v) ∩ S| ≥ 1}, and B = {v ∈ R :

|N(v)∩S| = 1}. By the expander property, |E|/|S| ≥ δ, and we will use this to show that |B|/|S| is also

large.

d|S| =
∑
v∈R
|N(v) ∩ S| = |B|+

∑
v∈R

|N(v)∩S|≥2

|N(v) ∩ S|
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≥ |B|+ 2|{v ∈ R : |N(v) ∩ S| ≥ 2}| ≥ |B|+ 2(δ|S| − |B|)

|B|/|S| ≥ 2δ − d

We will now instantiate a particular kind of graph, clause-variable graphs of random k-CNF formulae,

and use the expander property to give an informal argument for a width lower bound on their Res

refutations.

Definition 23 (Random Clause-Variable Graphs). Let F(∆, n, k) be the distribution on boolean formulae

taken as follows: out of n variables, pick m = ∆n random disjunction clauses of k literals each, and then

output the formula f = C1 ∧ C2 ∧ · · · ∧ Cm. Now let G(∆, n, k) be the distribution on bipartite graphs

taken as follows: for each formula f ∈ support(F), let L = {C1, . . . , Cm} and R = {x1, . . . , xn}, and add

an edge from Ci → xj if the ith clause of f contains variable xj (negated or unnegated).

Claim 24. For random graphs G ∼ G(∆, n, k) (for appropriate choices of parameters), G is a boundary

expander with high probability.

Proof. Omitted.

Claim 25. For ε > 1/4, for a k-CNF formula f , if Gf is a (ε,Ω(1))-boundary expander, then Res

refutations of f must contain clauses with width Ω(n).

Proof. Let π be Res refutation of f , and let c∗ be the first clause in π for which the minimal set of initial

clauses C1 . . . Cm implying c∗ has size at least n/8. Let S ⊆ [m] be the set of indices of these clauses. By

a complexity argument similar to the one in the proof of Lemma 18, we know that |S| ≤ n/4. Now, take

B ⊆ [n] to be the index set of variables which are contained in exactly one clause of {Ci}i∈S . For any

xj where j ∈ B, take i ∈ S such that xj ∈ Ci, and assume that xj , xj 6∈ c∗. Since, by assumption, the

clauses in S \ {i} are not enough to imply c∗ on their own, take an assignment α which satisfies every

clause Ck for k ∈ S \ {i}, but falsifies Ci and c∗. If we flip the value of α(xj), then c∗ remains unsatisfied,

and Ck for k ∈ S \ {i} remain satisfied, since none of them contain xj or xj – but Ci is now satisfied,

which is a contradiction since the set {Ci}i∈S must jointly imply c∗. Therefore, c∗ must contain a literal

for every variable on the boundary of its clauses, which, since Gf is a boundary expander and |S| ≤ n/4,

is ≥ Ω(1) · n/8 = Ω(n) such variables.

4 Aside: Res Upper Bounds for PHPmn

Since PHPmn is an “easier” formula to refute for m� n than PHPn+1
n , the exponential lower bound does

not extend to such formulae. We will list the general landscape of known results:

1. For PHPn+1
n : tree-like Res proofs are 2Θ(n2), and general proofs are 2Θ(n) in size.

• A similar Res lower bound exists for PHPmn , where m = O(n2)

2. [BP97]: For m ∼ 2
√
n, there are polynomial-size Res refutations of PHPmn .

• [Raz04]: This upper bound is nearly tight

3. [MPW02, PWW88]: In a different proof system, known as Res(polylog(n)), there are quasipolynomial-

size refutations of PHP2n
n .
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5 Some Open Problems

1. Are there polynomial-size refutations of PHP2n
n in the Res(polylog(n)) proof system? (Best known

is quasipolynomial-size, i.e. 2polylog(n))

2. Are there polynomial-size and bounded-depth refutations of the weak PHP (say, where m ∼ 2
√
n)?

6 References
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[Hak85]. The lower bound for Resolution proofs of the weak pigeonhole principle is due to Ran Raz

[Raz04].

2. Resolution lower bounds for Tseitin came next [Urq87] and explicitly introduced expansion as a

key underlying combinatorial property. Lower bounds for random SAT were first proved in [CS88],

and further simplified and improved in [BKPS02].

3. Resolution upper bounds for Resolution proofs of the weak pigeonhole principle are due to Buss

and Pitassi [BP97]. Bounded-depth Frege upper bounds were first proved by Paris, Wilkie and

Woods [PWW88]; a different quasipolynomial-sized Res(polylogn) was proven by Maciel, Pitassi

and Woods [MPW02].
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