
COMS E6998: Proof Complexity and Applications (Spring’25) January 23, 2025

Lecture 1: Introduction & Resolution Proof System

Instructor: Toniann Pitassi Scribes: Tianqi Yang

1 Introduction to the course
Proof complexity, as the name suggests, is the study of the complexity of proving logical statements within
different proof systems. While it is widely known in proof theory that many (propositional) proof systems
are both complete and sound, meaning that any true statement has a proof, it is not clear whether a
short proof always exists. A major question in proof complexity is whether every tautology has a short
proof in certain proof systems and whether we can efficiently find such a proof.

In this course, we will show the classical upper and lower bounds in proof complexity and discuss
some open problems in the field. We will then explore the connections between proof complexity and
various topics in theoretical computer science, such as SAT solvers and the TFNP classes.

Introduction to proof complexity. Many different proof systems are of interest in proof complexity,
including resolution and Frege systems. We will begin by introducing different proof systems and examin-
ing their relationships. We will then talk about the two most fundamental questions in proof complexity.
The first question concerns the upper and lower bounds on proof length in certain proof systems.

In a given proof system, how long does a proof of a given true statement have to be?

The second question is the automatizability of the proof systems.

How easy is it to find a (short) proof in a given proof system?

We will mainly focus on Boolean formulas and proof systems in this course, where a true statement is
a propositional tautology in classical logic. However, we will also talk about algebraic and semi-algebraic
proof systems in the course.

Lower and upper bounds for common proof systems. As partial answers to the first question
above, we will show lower and upper bounds for common proof systems in proof complexity. This is
analogous to proving algorithmic lower and upper bounds in computational complexity. We will prove
the classical results and present some open problems.

Applications and connections to other topics in TCS. In the second half of the course, we will
explore connections between proof complexity and various areas of theoretical computer science. Topics
include, among others, random and semi-random CSP problems, a recent surprising connection to lower
bounds for locally decodable codes, SAT solving and automated theorem proving, the relationship between
proof systems and TFNP subclasses, and various intriguing relationships between proof complexity bounds
and algorithmic upper and lower bounds. See, e.g., [PT16; FKP19; RGR22] for surveys on related topics.

1

2 Proof systems
We begin by introducing the concept of proof systems. In this course, we will primarily focus on proof sys-
tems for Boolean formulas, but we will also discuss algebraic proof systems for equalities and inequalities.
We will now introduce basic notations and properties that will be useful later.

2.1 Propositional proof system

In proof complexity, propositional proof systems refer to proof systems for proving that a Boolean formula
is a tautology in classical propositional logic. Informally, the “input” to a propositional proof system P
is a Boolean formula, and a proof in P provides an efficient way to verify that the input formula is always
true. We will give a formal definition in Section 3. The completeness of P ensures that every tautology
has a proof in P, while the soundness of P guarantees that any Boolean formula with a proof in P is
indeed a tautology.

Figure 1: An example of Boolean formulas: (x1 ∧ x2) ∨ (x2 ∧ (x4 ∨ x5))

Notations. Let φ be a propositional formula and Γ a set of propositional formulas. In this note, we
use the notation Γ |= φ to denote that φ is a semantic consequence of Γ, meaning that φ is implied by Γ

in classical logic. In particular, when Γ = ∅, |= φ is equivalent to φ being a tautology.
For any proof system P, we use the notation Γ ⊢P φ to denote that φ is a syntactic consequence of Γ

in P, meaning that that φ can be derived from Γ in the proof system P. In particular, ⊢P φ means that
there is a proof of φ in P. The soundness and completeness of a proof system P is equivalent to saying
that for any formula φ,

|= φ ⇐⇒ ⊢P φ.

Let φ be a propositional formula over variables x1, . . . , xn. Let α be a truth assignment (or interpre-
tation) to the variables x1, . . . , xn. We use the notation α |= φ to mean φ evaluates to true under the
assignment α.

Refutations. For some proof systems (such as resolution, which we will discuss in Section 5), it is
more convenient to view them as refutation systems. In such a system P, instead of showing that φ is
a tautology, a refutation of φ in P shows that φ is unsatisfiable. Since proving that φ is a tautology
is equivalent to proving that ¬φ is unsatisfiable, we will use these two perspectives interchangeably
throughout the course. For such refutation systems, we will use the notation φ ⊢P ⊥ to emphasize that
the unsatisfiable formula φ has a refutation in P.

2

CNF. Recall that a variable x or its negation x is called a literal. A clause is a disjunction of literals.
A formula φ is in conjunctive normal form (CNF) if it is a conjunction of clauses, i.e.,

φ = C1 ∧ C2 ∧ . . . Cm (1)

where C1, . . . , Cm are all clauses. The width of a clause is the number of literals it contains, and the
width of a CNF formula is the maximum width among its clauses. We say that a formula is in k-CNF if
it is a CNF of width at most k. One may similarly define disjunctive normal form (DNF) consisting of
formulas that are disjunctions of conjunctions of literals.

By the Cook-Levin Theorem, any formula φ can be transformed into a CNF (even 3-CNF) ψ such
that φ is unsatisfiable if and only if ψ is unsatisfiable. Therefore, for refutation systems, we often assume
that the input formula φ is a CNF, and we want to find a refutation φ ⊢P ⊥ if φ is unsatisfiable.

2.2 Algebraic and semi-algebraic proof systems

We will also talk about algebraic and semi-algebraic proof systems. Instead of refuting CNF formulas
f = C1 ∧ . . . Cm over Boolean variables xi ∈ {0, 1}, algebraic proof systems (semi-algebraic proof systems,
resp.) start with a system P of polynomial equalities (inequalities, resp.) over some field or ring. A
refutation of P in an algebraic proof system or semi-algebraic proof system is a “proof” that P has no
solution over the underlying field or ring.

By mapping {⊤,⊥} to {1, 0}, any Boolean formula φ can be “algebrized” into a system P of polynomial
equalities such that φ is unsatisfiable if and only if P has no solution. So any algebraic proof system or
semi-algebraic proof system can also be viewed as refutation systems for the classical propositional logic.
In this course, we will mainly talk about algebraic proof systems for such Boolean formulas.

Example 1. For example, the CNF formula

φ = (x1 ∨ x2) ∧ (x1 ∨ x3 ∨ x4)

can be written as the following set of polynomial equations over reals:
(1− x1) · x2 = 0

x1 · (1− x3) · (1− x4) = 0

x2i − xi = 0, i = 1, 2, 3, 4

,

where the last set of equations ensures that each xi takes values in {0, 1}.

2.3 Other proof systems

There are many other types of proof systems. In general, any way of proving statements to others that
can be easily verified can be regarded as a proof. Consider the following Hajós calculus system (see, e.g.,
[PU95; IST10]) when k = 4. It consists of one axiom, K5, and three deduction rules:

(Vertex/Edge Introduction) Add an arbitrary number of vertices and edges.

(Contraction rule) Contract two non-adjacent vertices and remove duplicating edges.

3

(Edge Elimination rule) Let G1 and G2 be graphs that are identical except G1 contains the edges
{v1, v2} and {v1, v3}, while G2 contains the edges {v1, v2} and {v2, v3} for three vertices v1, v2, v3.
Let G3 be the graph that is identical to G1 and G2 except it only contains the edge {v1, v2} among
v1, v2, v3. Then G3 is derivable from G1 and G2.

Figure 2: Examples of the Hajós calculus system (k = 4)

Figure 2 demonstrates examples of the rules. This system can be viewed as a Hilbert-style proof
system proving that a graph is non-4-colorable. It is sound and complete in the sense that a graph is
non-4-colorable if and only if it can be derived in the by the rules.

3 Cook-Reckhow propositional proof systems
We now present the formal definition of propositional proof systems as introduced by Cook and Reckhow
[CR79]. We take an arbitrary typical binary encoding of propositional formulas and define the set
TAUT ⊆ {0, 1}∗ as the set of encodings of all tautologies, i.e.,

TAUT ≜ {encoding of φ | φ is a tautology} .

Definition 2 (Propositional proof system). A propositional proof system (pps) is a polynomial-time
algorithm V : {0, 1}∗ × {0, 1}∗ → {0, 1} with 2 inputs (x, p) such that for all x ∈ {0, 1}∗,

x ∈ TAUT ⇐⇒ ∃p ∈ {0, 1}∗ s.t. V (x, p) = 1. (2)

In the above definition, one may think of x as the encoding of a Boolean formula φ, and p as the
encoding of a proof of ⊢ φ in the proof system. The ⇐= and =⇒ of Equation (2) correspond to the
soundness and completeness of the proof system, respectively.

4

Note that in the above definition the running time of V is bounded by poly(|x| , |p|). However,
Equation (2) does not impose a bound on the length of the proof p when x ∈ TAUT . So when the proof
p is very long, say |p| = 2|x|, then the running time of V can be super-polynomial in the length of the
formula x.

Example 3 (Truth table). A (trivial) example of a propositional proof system is the truth table system,
where the proof p consists of the truth table of the formula encoded by x. The algorithm V can simply
verify whether p is indeed the truth table, and whether the truth table is all-1. Although the length of p
is exponential in the number of variables in x, the running time of V is always bounded by poly(|x| , |p|).
So this satisfies Definition 2.

Remark 4. The requirement that the algorithm V runs in polynomial time reflects the philosophical idea
that in a well-designed proof system, one should be able to efficiently verify whether a proof is correct.
In addition, we want the definition to have connections to other fields in complexity theory. Indeed,
Theorem 6 shows the tight connections between propositional proof systems and fundamental questions in
structural complexity.

In Equation (2), the length of the proof p can be arbitrarily long. So it is natural to ask whether such
there always exist a short proof p, or there are cases where the proofs have to be long. The following
question is a central question in proof complexity:

Is there a propositional proof system V such that every propositional tautology has a short
proof in V .

Ideally, as complexity theorists, we want to ask whether there exists a pps such that every tautology
has a polynomial-size proof. This leads to the following definition.

Definition 5 (Polynomially-bounded pps). A propositional proof system V is polynomially-bounded if
for all x ∈ {0, 1}∗,

x ∈ TAUT ⇐⇒ ∃p ∈ {0, 1}poly(|x|) s.t. V (x, p) = 1.

Cook and Reckhow [CR79] proved that such proof systems cannot exist unless the polynomial hier-
archy collapses.

Theorem 6 ([CR79]). There exists a polynomially-bounded proof system if and only if NP = coNP.

The proof of this theorem is straightforward: if a polynomially-bounded propositional proof system
exists, then one can design a non-deterministic polynomial-time algorithm for UNSAT by guessing a
refutation p. Conversely, any NP algorithm for UNSAT can be interpreted as a polynomially-bounded
proof system.

Notably, Theorem 6 suggests a potential approach to proving P ̸= NP by ruling out the existence of
polynomially-bounded propositional proof systems.

4 The landscape of proof complexity
Analogous to structural complexity theory, where we study the relationships between different complexity
classes, an important question in proof complexity is understanding the relationships between different
propositional proof systems. We first define what does “one proof system is stronger than the other”
means in proof complexity.

5

Definition 7 (p-simulation). A proof system P p-simulates another proof system Q if, for any proposi-
tional tautology φ, whenever φ has a proof of size s in Q, it also has a proof of size poly(s) in P.

Definition 8 (p-equivalence). Two proof systems P and Q are p-equivalent if P p-simulates Q and Q
p-simulates P.

We now introduce a basic hierarchy of propositional proof systems in Figure 3, where an arrow from
P to Q indicates that P p-simulates Q. Hopefully, we will gradually enrich and expand this graph
throughout this course.

Figure 3: Hierarchy of proof systems

In Figure 3, Truth-Table represents the truth table proof system described in Example 3. Frege denotes
the standard Hilbert-style proof system with an arbitrary finite set of axioms and deduction rules.1. The
Extended Frege system, EF, is an extension of Frege that allows extension variables. The Resolution
system, Res, will be discussed in detail in Section 5.

Conceptually, Res, Frege, and EF can all be regarded as Frege-like systems where proof lines are
constrained to different circuit classes. We will see that Res, Frege, and EF correspond to Frege systems
where proof lines are restricted to 1-DNF (single OR functions), NC1, and P/poly, respectively.

5 Resolution system
We now formally introduce our first propositional proof system: resolution. Resolution is a simple yet
widely used proof system both in theory and in practice.

Resolution, denoted by Res, is a proof system for refuting unsatisfiable CNF formulas. For any
propositional tautology, one must first convert it to an equivalent CNF using the Cook-Levin Theorem
and then negate it to obtain an unsatisfiable formula. It has only one rule: the resolution rule

A ∨ x B ∨ x (Resolution rule)
A ∨B

1Cook and Reckhow [CR79] proved that Frege-like systems with any sets of axioms and rules are p-equivalent to each
other, as long as they are sound and complete.

6

A resolution refutation of a CNF formula φ = C1 ∧C2 ∧ . . . Cm is represented as a directed acyclic graph
(DAG), where each vertex has in-degree 0 or 2 and is labeled with a clause (a disjunction of literals). Each
vertex with in-degree 0 is labeled with one of the clauses C1, . . . , Cm in φ. Each vertex with in-degree 2

is labeled with a clause derived from the two preceding clauses using the resolution rule. The proof ends
with the empty clause ∅.
Example 9. Consider the unsatisfiable formula

φ = x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ x3.

For resolution, it is often more convenient to represent φ as a set of clauses: {x1, x1 ∨ x2, x2 ∨ x3, x3}.
The tree in Figure 4a is a valid resolution refutation for φ ⊢Res ⊥. It can be formally written as the
following proof tree:

x1 x1 ∨ x2
x2 x2 ∨ x3

x3 x3

⊥
Tree-like resolution, denoted by TreeRes, is a restricted form of resolution in which the proof DAG

is a tree. The proof in the above example is indeed a tree-like resolution. It is clear that resolution
p-simulates tree-like resolution. Next week, we will show that the converse does not hold.

The size of a resolution proof is the number of clauses it contains. The depth of a tree-like resolution
is the height of the proof tree. The width of a resolution proof is the maximum width of any clause in
the proof. For instance, the proof in Example 9 has size 7, depth 4, and width 2.

Alternatively, a resolution proof can be represented as a sequence of clauses, where each clause is
either one of the original clauses in φ or derived from two preceding clauses using resolution. The final
clause in the sequence is the empty clause ∅. In this view, tree-like resolution corresponds to proofs
where each line is used in the resolution rules at most once.

(a) Resolution proof tree of φ ⊢Res ⊥ (b) Decision tree solving Searchφ

Figure 4: Resolution proof tree and the corresponding decision tree of Example 9

5.1 Soundness and completeness of resolution

In this section, we prove that resolution is both sound and complete. We begin with soundness, which is
typically the easier direction.

7

We begin with the soundness of the resolution rule.

Lemma 10 (Soundness of the resolution rule). For any interpretation α, if α |= A ∨ x and α |= B ∨ x,
then α |= A ∨B.

Proof. This follows directly from a case analysis on the truth value of x:

• If α(x) = ⊤, then α |= B, implying α |= A ∨B.

• If α(x) = ⊥, then α |= A, implying α |= A ∨B.

We now show the soundness of resolution.

Theorem 11 (Resolution is sound). φ ⊢Res ⊥ =⇒ |= ¬φ.

Proof. Suppose that Π is a resolution refutation of φ. Let C1, . . . , Cm, D1, . . . , Dm′ be the sequence of
clauses in Π (in topological order), where C1, . . . , Cm are initial clauses from φ andD1, . . . , Dm′ are derived
clauses. By the syntax of resolution, Dm′ = ∅ is the empty clause. Assume, for the sake of contradiction,
that φ is satisfied by some assignment α. We prove by induction over i that α |= C1∧· · ·∧Cm∧D1∧· · ·∧Di.

The initial case i = 0 is trivial since C1 ∧ · · · ∧ Cm is the formula φ.
Suppose that α |= C1 ∧ · · · ∧Cm ∧D1 ∧ · · · ∧Di−1 for some 1 ≤ i ≤ m′. The clause Di is derived from

two previous clauses via the resolution rule, so α |= Di by Lemma 10.
However, Dm′ is the empty clause, so plugging in i = m′ gives α |= ⊥. Contradiction.

For completeness, we show that even tree-like resolution is complete. The completeness of resolution
then follows directly by definition.

Theorem 12 (Tree-like resolution is complete). |= ¬φ =⇒ φ ⊢Res ⊥.

The idea is to relate tree-like resolution proofs to decision trees solving search problems in TFNP.
Since decision tree is a complete computational model, it follows that tree-like resolution must also be
complete.

Consider the following search problem. Let f = C1 ∧ C2 ∧ · · · ∧ Cm over variables x1, . . . , xn be an
unsatisfiable formula. The problem Searchf takes as input an assignment α ∈ {0, 1}n and outputs any
index i for which α |̸= Ci.

We consider decision trees solving Searchf , where each internal node is labeled with a variable xi and
each leaf is labeled with a clause. Figure 4b gives an example of a decision tree solving Searchφ for the
φ in Example 9.

The key claim is stated below.

Claim 13. Let f be an unsatisfiable CNF formula. If there is a decision tree solving Searchf , then there
is a tree-like resolution proof refuting f .

In fact, with some caveats, one can show that the optimal decision tree solving Searchf has exactly the
same shape as the optimal resolution proof refuting f , as suggested by the similarity between Figure 4a
and Figure 4b.

We first prove that tree-like resolution is complete from Claim 13.

8

Proof of Theorem 12. Let f be any unsatisfiable CNF formula. By definition, Searchf must be a total
search problem. There is always a canonical decision tree solving the total search problem Searchf by
enumerating over all possible inputs. By Claim 13, this transforms to a tree-like resolution proof refuting
f .

We now prove Claim 13.

Proof of Claim 13. Let T be a decision tree of the minimum size solving Searchf . We now relabel the
nodes in T with clauses so that they form a tree-like resolution refutation of f . The relabeling is simple:
each leaf is labeled with its corresponding decision tree output, and each internal node that queries the
variable xi is labeled with the clause obtained by applying the resolution rule with xi resolved. We need
to show that this indeed gives a valid tree-like resolution proof. We do so from leaves to the root and
maintain the following property for any node v in T :

(*) The clause C labeled at v is falsified by the partial assignment induced by the path from root to v.

All leaves satisfy (*) by the definition of T solving Searchf . We now consider the internal nodes in a
bottom-up order. Let v be an internal node of the decision tree T querying the variable xi. Let v0 be
the child going from the edge xi = 0, T0 be the subtree rooted at v0, and C0 be the clause labeled at v0.
Similarly let v1, T1, and C1 be the child, subtree, and clause from xi = 1.

We claim that xi occurs in both C0 and C1. To see this, assume that C0 does not contain the variable
xi. The first observation is that by minimality, T does not query any variable twice along any path from
the root to a leaf. This means that xi will not be queried again in the subtree T0, so xi will not occur in
any of the clauses in T0. In particular, if we consider any leaf w in T0, the decision tree outcome Cw at
w, which is the same as the clause labeled at w, does not contain xi. Let σw be the partial assignment
induced by the path from root to w, Cw must also be falsified by the assignment σw\{xi ← 0}. Therefore,
we can remove the query to xi and replace the whole subtree at v with T0. This gives us a smaller decision
tree solving Searchf , contradicting the minimality of T . An analogous argument can be applied to the
case when C1 does not contain xi.

By (*), xi must occur positively in C0 and negatively in C1. Suppose that C0 = xi ∨ A0 and
C1 = xi ∨A1. By definition we label v with the clause A0 ∨A1. Let σ be the partial assignment induced
by the path from the root to v. Again by (*) at v0, σ∪{xi ← 0} falsifies C0, which implies that σ falsifies
A0. Similarly, by (*) at v1, σ falsifies A1. Hence, σ falsifies A0 ∨A1, completing the induction step.

Applying (*) at the root, since the partial assignment at the root is empty, the only clause falsified
by the empty assignment is the empty clause. This completes the proof.

6 Pigeon-hole principle
To prepare for proving strong resolution lower bounds, we first introduce hard formulas. In proof com-
plexity, not many hard candidate formulas are commonly used. Today we will define the pigeon-hole
principle, which is one of the most classical hard formula in proof complexity. We will show that the
pigeon-hole principle requires an exponential-size resolution proof next week.

The pigeon-hole principle ¬PHPn+1
n , or more generally ¬PHPm

n for any m > n, is an unsatisfiable
formula consisting of nm variables and m + nm2 clauses. The variables Pij , for i ∈ [m] and j ∈ [n],
semantically indicate that the i-th pigeon is assigned to the j-th hole. It has two kinds of clauses:

9

(Pigeon clauses) For each i ∈ [m], ¬PHPm
n contains the clause∨

j∈[n]

Pij .

(Hole clauses) For each j ∈ [n] and distinct indices i1, i2 ∈ [m] with i1 ̸= i2, ¬PHPm
n contains the

clause
Pi1j ∨ Pi2j .

Intuitively, ¬PHPm
n requires counting, making it difficult to prove in weak proof systems that lack the

ability to express counting arguments. Next week, we will formalize this idea and show that ¬PHPn+1
n

requires a resolution proof of size 2Ω(n).

10

References
[CR79] Stephen A. Cook and Robert A. Reckhow. “The Relative Efficiency of Propositional Proof

Systems”. In: J. Symb. Log. 44.1 (1979), pp. 36–50. doi: 10.2307/2273702. url: https:
//doi.org/10.2307/2273702 (cit. on pp. 4, 5, 6).

[FKP19] Noah Fleming, Pravesh Kothari, and Toniann Pitassi. “Semialgebraic Proofs and Efficient
Algorithm Design”. In: Found. Trends Theor. Comput. Sci. 14.1-2 (2019), pp. 1–221. doi:
10.1561/0400000086. url: https://doi.org/10.1561/0400000086 (cit. on p. 1).

[IST10] Kazuo Iwama, Kazuhisa Seto, and Suguru Tamaki. “The complexity of the Hajós calculus for
planar graphs”. In: Theor. Comput. Sci. 411.7-9 (2010), pp. 1182–1191. doi: 10.1016/J.TCS.
2009.12.011. url: https://doi.org/10.1016/j.tcs.2009.12.011 (cit. on p. 3).

[PT16] Toniann Pitassi and Iddo Tzameret. “Algebraic proof complexity: progress, frontiers and chal-
lenges”. In: ACM SIGLOG News 3.3 (2016), pp. 21–43. doi: 10.1145/2984450.2984455. url:
https://doi.org/10.1145/2984450.2984455 (cit. on p. 1).

[PU95] Toniann Pitassi and Alasdair Urquhart. “The Complexity of the Hajos Calculus”. In: SIAM
J. Discret. Math. 8.3 (1995), pp. 464–483. doi: 10.1137/S089548019224024X. url: https:
//doi.org/10.1137/S089548019224024X (cit. on p. 3).

[RGR22] Susanna F. de Rezende, Mika Göös, and Robert Robere. “Guest Column: Proofs, Circuits, and
Communication”. In: SIGACT News 53.1 (2022), pp. 59–82. doi: 10.1145/3532737.3532746.
url: https://doi.org/10.1145/3532737.3532746 (cit. on p. 1).

11

https://doi.org/10.2307/2273702
https://doi.org/10.2307/2273702
https://doi.org/10.2307/2273702
https://doi.org/10.1561/0400000086
https://doi.org/10.1561/0400000086
https://doi.org/10.1016/J.TCS.2009.12.011
https://doi.org/10.1016/J.TCS.2009.12.011
https://doi.org/10.1016/j.tcs.2009.12.011
https://doi.org/10.1145/2984450.2984455
https://doi.org/10.1145/2984450.2984455
https://doi.org/10.1137/S089548019224024X
https://doi.org/10.1137/S089548019224024X
https://doi.org/10.1137/S089548019224024X
https://doi.org/10.1145/3532737.3532746
https://doi.org/10.1145/3532737.3532746

	Introduction to the course
	Proof systems
	Propositional proof system
	Algebraic and semi-algebraic proof systems
	Other proof systems

	Cook-Reckhow propositional proof systems
	The landscape of proof complexity
	Resolution system
	Soundness and completeness of resolution

	Pigeon-hole principle

