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D Algebraic ProofSystems
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IPS (Ideal Proof System)

② Next week-spring break.
(No class or office hours)
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↓ ·
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~sty of DCo <p>

(1) Beigal-Tarni/Tao/Allender-Hentrapt circuit
Nomal form therems hold !

v
Ac(p] -> /12

depth d

⑦p

& n/1)

A

/1) ↳

(2) Method of probalistic polys [Smolensky , Razbor]
doesn't seem to work



~sty of DCo <p>

(1) Beigal-Tarni/Tao/Allender-Hentrapt circuit
Nomal form therems hold !

Theorem (Buss
,
Kolodziej <zyk ,

Zdanowski]

Any ACO2p] Frege proof T of quas , polynomial size can be

converted into a depth 4 quasipoly size AC(p) Frege proof,
where all formulas are : VONOOpo small-AND

v
Ac(p] ->

I y ACCD)
depth d &

/1)

⑦p

A

/1) ↳
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~sty of DCo <p>

③ Two special cases :

① Limes are polynomialspoly calculus:

Res(Op) : ①
/III

&

This motivates a direct study of proofs where lines
are low depth Ac[p].

Nsate/PC : Lines are DOAND) = polynomials mod p)



UNSOLVABILITY OF POLYNOMIAL EQUATIONS

INPUT : A system of polynomial equations over If

P = [P. (x) = 0
,
P2(X) =0

, ... , Pm(X) = 03

OUTPUT : 1 Iff Je FF" that satisfies all equations



ALgEBRAIC PROOF SYSTEMS

· ALgEBRAIC PROOF SYSTEMS CERTIFY UNSOLVABILITY OF A

SYSTEM OF POLYNOMIAL EQUATIONS OVER IF

given P = [P.
(x) = 0

,
P2(X) =0

, ... , Pm(X) = 03
S

certify there is no solution satisfying all equations over if



HILBERT'S NULLSTELLENSATZ

Let 0 = [p,
(x) = 0

. ..., Pm(x) = 03. Then P is unsolvable over

#f Calg. closed) iff there exist polys g,
(x)

, ... , gm(x) such that

gi(x) P: (x) = 1



NULLSTELLENSATE REFUTATIONS

Let 0 = [p,
(x) = 0. ..., Pm(x) = 03

,
over IF

.

A Nullstellensatz refutation of P is an explicit List of

polynomials (2, . .... gm) over # such that

5 + 9.
= (g's given as sun of terms)

i= (m)



NULLSTELLENSATE REFUTATIONS FOR CNF'S

OUR FOCUS IS ON REFUTING UNSAT CNF
,

SO APPLY STANDARD TRANSLATION:

Let F = c
,
12 ... Cm .

Convert each ? to poly equation :

Example C
.

= (x
,vXzvxy) => P = (1- X

,)()-xz)Xy
↑=1... PrEPo ...

-P= 0
, EX0

For CNF formula F = < 11 .. 1 m
,

we define

a Nullstellensatz refutation of F over # to be a Nullstellensatz

refutation of P = [P0, Fo,
--

, Pa, X0,, ..., X-X-03

NSdeg (F) = min degree of any Nullstellensatz refutation of



Example : (Negation of) Induction

LINDn :

(1 - 4
,): 0

X
,

(X,)(1- Xz) = 0 X
,
- Xz

(Xa)(1- Xz) = 0 *2- X3

(Xs)(1-Xy) = 0
"

:

(n)(1-Xn) = 0 Xna Xn
&

Xn = 0 -Xn



Example : (Negation of) Induction

salutation
LINDn :

B
, (1 - 4

,): 0 ① Y =

A (X,)(1- Xz) = 0

As (Xa)(1- Xz) = 0
②I

* (Xs)(1
-Xy) = 0

:
③ ***E*

& (Yn- ) (1-Xn) = 0 ④ Y
,
+
Yy Yy*Y = X

,

+ X
,

Ans Xn = O -

:

: Th>X
⑪ + Pn : 1 = 0



Example : (Negation of) Induction
↑

&

salutation
LINDn :

B
, (1 - 4

,): 0
① Y =

A (X,)(1- Xz) = 0 ② E+ 0

As (Xa)(1- Xz) = 0 B
3 B Ay

- -

* (Xs)(1
-Xy) = 0

③ FEx ( - xy)x,
(1-Xz) + X

, Yg(tXy)= 0

By

: ④

& (Yn- ) (1-Xn) = 0 -I
:

Ans Xn = O

:

Proof has⑭+
degree (n)



Example : (Negation of) Induction

Can get adegree Ollogn) Nsatz refutation by divideandconquer
LINDn :

B
, (1 - 4

,): 0

A (X,)(1- Xz) = 0
-

↑ Xt

etYy *As (Xa)(1- Xz) = 0

"
* (Xs)(1

-Xy) = 0
-

: Y + Y5 4 + Xa
& (Yn- ) (1-Xn) = 0

T

7

Ans Xn = O log ~ levels &

&

X
,

Y
,
7X ~ Yn

-

this is optimal degree :
1 = 0

Therem (Buss-P]

Any Nsatz refutatio ofa SNDy has degree of (logn)



Finding degree-d Natz refutations in time noca)

Let F = C 1.- 1C be an unsat Ne

Let Pg
: 0, ... DatO

be degree 3 poly equs

Suppose there are degree ed multilinian polys g- - - gm
such that EP: gi

: (

Write system of linegu equations :

: (c (m)
,

+ = (n)
,

Ht)ztvariables

:
efficient in front of tem to in

g

equations : for each them t (nd
,

12H) = d :

one equation that say weft's roresponding to term-

Sum too

for - = % : one equ says welfs corresponding to tem t = &
sum toa



Finding degree - & Nsatz refutations

Let F = C 1.- 1C be an unsat Ne

Let Pg
: 0, ... DatO

be degree 3 poly equs

Suppose there are degree ed multilinian polys g- - - gm
such that EP: gi

: (

Write system of linegu equations :

: (c (m)
,

+ = (n)
,

Ht)ztvariables

:
efficient in front of tem to in

g

equations : for each them t (nd
,

12H) = d :

one equation that say weft's roresponding to term-

Sum too

for - = % : one equ says welfs corresponding to tem t = &
sum toa

# of variables mont ? solve in time poly (m ,
nt) = poyint)

# equations ~ At



Degree Automatisability of Nsatt Refutations

This gives :

Thgem There is an algorithm At such that for any unsatisfiable

SCNF F
, AMS(PE) outputsa Nsatz refutation in time

no() where =min degree of any Nate
refutation of P



SizeDegree Relationship for Nullstellensatz Refutations of CNES

Recall : For Resolution we have the following with-size relationship

rem For any
CNs F if F has a Res refutation of sizes

then F has a Res refutation of with Option

A similar relationship holds for Nsatz refutations

monomial-size of a poly = number of wondero

Den The monomials in a

monomial size of a Nsatz refutation Q = Eg , -- ym3 is monomicalsize (i)

The manomial size of CNF F = min monomial-size over all Nsatz refutations
of F

Them For any CNFF, if F has a Nsatz refutation of monomical-size

thenF has a degree Of Wigs) Nate refutation



POLYNOMIAL CALCULUS (PC) Pi Pe
- -

-

PC is a damic version of Nullsatz :
Axoms : PieP (initial polynomials over F /

1 = 0

Rules : # = 0
, g

= 0 = Cf +Bg
= 0

,
E

, Bef
f = 0 = xf = 0

,
(- x)+ = 0

Last derived polynomial : 1 = 0

complexity :

&gree is max degree over all polynomials in refutation

&e is sum of sizes of all polys (total # of occurrences
of monomials)



Nsatz vs POL Calculus

· PC can simulate Nsult with respect to degree :

Let F be unsat 3CNF
. If Nullsutz has a

defee-d refutation of P
,

then PC
also has degee and reputation of P



Nsatz vs POL Calculus

· PC can simulate Nsult with respect to degree :

Let F be unsat 3CNF
. If Nullsutz has a

defee-d refutation of P
,

then PC
also has degee and reputation of P .

·
Note cannot Simulate P7 With respect to defee :

There exist UNSAT BCNTs that have depe oll)
PC refutations

,

but require whir) degree
Nsutt refutations [Clegy-Edmond-Emprylazzo
weaker result : Induction has pe refutations of degree OG)

but
require thlogn) Nsutt degree [Buss-Podussi)



A slight generalization of PC/Nsatz that

poly-simulates Nsutt

: Let + be unsat 3CNE

PCR conversion of F to system Po of pay equs :

vars : Xi
, iem)

,

Ti
,
it (n)
↑ dual vars ; represent E

Equations :

? : (4
, -x) + Ec = *-X = 0

plus [x+ - 1 = 03 Viein]

ply,0,500 Vieen]

Thsem PCR poly simulates Resolution



Degree Automatizability

Georem Klegg-Edmonds - Impaglazzo
There is an algorithm A such that for any unsatisfiable
SCNE F

, APCPE) outputs a PC refutation in time

nord) where d = min degree of any
PC refutation of Pe

Proof uses modified version of gribne basis algorithm



~LeDegree Relationship
for PC Refutations

Defi The monomial-size of a poly a = number of wondero

-
monomials in a

The monomial size of a PC refutation(P
, P ...., 10]

is2 monomial-size (p.
i

⑫The manomial size of CNF F = min monomial-size over all PC refutations

of

Them For any CNFF, if F has a
PC refutation of monomical-sizes

thenF has a degree Ofigs) PC
refutation



PC Degree Lower Bounds

There are a varisby of fightf(u) Hower bounds

for example :

() PHP

(2) Moday principle ,
for PC proofs overEg , g

* P



IPS (The Ideal Proof System) [P96 ,
P98

, gp14]

· INSTEAD OF MEASURING COMPLEXITY OF9S BY NUMBER OF

MONOMIALS
,
MEASURE BY THE ALGEBRAIC CKT SIZE

⑦

X* X
,X4)p,p

#
&

q
,

An
92

# *

Pi X
,

+
2 X 3 * P

PLINSATE- IPS [P96
,
198

,
9P14]

generalizes to

sos - CONE PROOF SYSTEM
[Alekseev

,
grigoriev

,
Hirsh

,
Tzameret' 20]



IPS (cont'd)

An IPS certificate/proof of unsolvability c(x
, y)

ofP = (p,
(*) = 0

, ..., Pm(5) = 0 3 Cover #)
*

is an algebraic circuit C(N...Xon
,
Y... -Ym) -

such that
* * *

(1) ((X, . .Xn ,
) = 0

(2) ( (X, ..

> Xn ,
P

,
(x)

, ...,
Pm(5)) = 1

X
, %2 X3 C

(1) and (2) imply that I is in the ideal generated
by 0 = Sp,

= 0
..., Pm

=03

(1) forces the polynomial (( ,) to be in ideal generated by



IPS (cont'd)

① IPS refutations verifiable in randomized postine
vice PIT (polynomial identity testing)
: JPS Not known to be a "cook-Reckhow" proof system

Still we expect thatJPS is not poly-bounded ;

Lemma IPS poly-bounded -> CONPEMA -> Poly hierarchy
collapses

② IPS p-simulates Extended Frege
More generally C-JPS p-simulates & -

Frege
(for common circuit classes e)



VP and UNP [Valiant]

A family of polynomials (Fn) is in UP if its degree and

circuit size are poly(n)

A family of polynomials (gn)
is in UNP if it can be written :

gn(X) = 2
Ecoizpoyce)

Fre, )
,
for some (F) -VP

Myor Open Problem : Show UP AVNP



CONNECTING LBS FOR STRONG PROOF SYSTEMS TO CIRCUIT LBS ?

Theorem [grochow-p 14]

Superpoly JPS Lower bounds - VPFUNP

OEN superpoly EF Lower bounds -> PANP ?



VPEVNP

=-



&

LOWER BOUNDS FOR JPS SUBSYSTEMS

* I Restrictions of IPS (e . g ., multilinear) [FSTW 116]

* 2
Shubsmale Conjecture -> Superpoly IPS lower boundsLAGHT' 20]

* > Superpoly lower bounds on bit complexity [Blekseev'21]

* 4 VPAUNP => superpoly IPS lower bounds for EF] CST'21]

* 3 Superpoly LBs for constantdepth IPS over R CAF22
,
gHT'22)

* Not for CNF formulas (poly egos over IR
* CNF but not known to be virset



PROOF COMPLEXITY ZOO

IPS

↓

Extended Frege

Fregte
*

sos--↓
- -

↑

Resolution" #Nullstellensatz
Exponential

·

LBs known ↓ ·
Truth Table
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