Lecture 6

· Hw1 posted

Theorem [P-Beame-Impagliatto '92, Krajicek-Publick-Nouds'92]
[Earlier breakthree superpoly LBs Ajtai '88]
Any depth-d Fiege proof of PHP^{nt1} requires size
$$a^{n^{c_d}}$$
, $\varepsilon_d - \frac{i}{6}d$

High Level Idea Mirrors Aca - circuit lower Bounds:

Proof high Level

- A restriction $p: \{x_1, \dots, x_n\} \longrightarrow \{o_{i}, i_{i}\}$ is a partial assignment that sets some of the underlying variables to 0 or 1.
- · Assume for soke of contradiction C is an AC circuit of polysite computing Pairity over X ... Xn

• Repeatly apply restrictions p.,..., p. to successively shrink for the lemma C to circuits C, = C/p, Cz = C/p, Cz = C/p, ... Cz = C/p, ... P.z.

In end: Cd is a trivial circuit that cannot compute parity on remaining unset variables Switching Lemma (for PAKITY Lower Bound)

<u>Defn</u>: t-DNF is a disjunction of terms, where each term has max size t

Switching Lemma (for PARITY Lower Bound)

Detn Let 5 be a t-DNF, p a partial restriction The canonical decision tree for f is defined as follows:

1

Switching Lemma (for PAKITY Lower Bound)

 $\frac{\text{Example}}{f = x_1 \hat{x}_2 \lor x_4}$ $t_1 \quad t_7$

Switching Lemma (for PARITY Lower Bound)

Random Restrictions PP: set of all restrictions p on domain x, ... Xn where exactly n-pn voriables are set to 0/1 and remaining pn variables are set to *.

Lemma (Hostad)
Let f be an r-ONF over
$$X_{n}, P \neq \frac{1}{4}$$

then $Pr [T(f|_{p}) \text{ has depth } \ge s] \le (4pr)^{s}$
 $p \cdot p_{n}^{p}$

Claim No depth of decision tree computes Painty on ≥ g+1 variables

AC (d) Lower Bound for PARITY

Ø.

Claim No depth of decision tree conjutes Painty on 3 get variables

Set
$$p = \frac{1}{8r}$$
 so prob. SL fails for a random p is $= \frac{1}{2}r$
Set $p = \frac{1}{8r}$ so prob. SL fails for a random p is $= \frac{1}{2}r$
Set $d < a^r$ so $\forall i = 1, d - 1$, by union bound $\exists p_i$ that is good in round i .
For base case claim, Need. $n' = p^{d-1}n > r \implies n > (8r)^{d-1} \cdot r$. Set $r = n^{\frac{1}{2}d}$ works.
This gives LB $f = a^{n^{1}(\frac{1}{2}d)}$

Aca - Frege Lover Bounds for PHPn+1

Recall an Ac_d° freque proof of PHP^{N+1} is a sequence of Ac_d° formulas F_1, F_2, \dots, F_m such that each F_1 is either an axiom, or follows from one or two previous lines by a valid Freque rule, and $F_m = PHP_n^{n+1}$.

Assume (for contradiction) we have a size of AC' Frege proof TT for PHP "

We want to apply a sequence of restrictions to reduce the depth of TT until eventually it has depth 1, and then get a direct contradiction * Problem: every line in TT is a tautology so each line is already equivalent to a depth-1 trincil formula.

* New I dea. we need to differentiate between a complicated depth-d formula that is equivalent to "1" and a simple formula equiv. to 1.

> Imagine instead that n is infinite. Then there is a 1-1 map from A+1 >n (for n infinite) We will define a family of partial restrictions that does not violate PHP and carry art a similar depth reduction, replacing "equivalent" with "locally consistent"

$$\begin{array}{c} \underline{Matching Disjunctions + Matching Decision Trees}}\\ \underline{Matching restrictions} \ p \ over \ \{P_{i,j}, i \in D, j \in R \}: \\ p \in (\mathbb{Q}_n^{p} \ is \ a \ partial \ (-1 \ mapping \ of \ size \ n-2 \\ corresponding \ restriction: \\ If \ p \ maps \ i \rightarrow j \ then \ \begin{pmatrix} P_{i,j} = 1 \\ P_{i,j} = 0 \\ P_{i,j}$$

Matching -disjunctions
A matching disjunction is on or of matching terms, where a matching term
corresponds to a partial (-) mapping. An r-disjunction an OR of size = r matching terms
Example:
$$P_{12}P_{3,4} \sim P_{3,2}P_{4,1} \sim P_{2,3}$$
 is a 2-disjunction
Restriction of an r-disjunction & on r-disjunction, p a matching restriction
defines flp in Natural way
Example: $P_{12}P_{34} \sim P_{32}P_{41} \sim P_{32}P_{41} \sim P_{33}$ = P_{32}

Matching Disjunctions + Matching Decision Trees

Matching Decision Trees A matching decision the over DUR 1s a rooted directed tree where:

- · Internal Nodes Labelled by elements of DUR
- . Leaves Labelled by O or 1
- . If the noot at T is cabelled by iED, then the R there is one outedge from not labelled i-j
- · If not of T is labelled by jER, then WiED, there is one outedge labelled is
- Let $T^{(i\to j)}$ be the tree whose root is the wode connected to not $q T by edge (i\to j)$ Then $T^{(i\to j)}$ is a matching decision tree over $D' \cup R'$, $D' = D \setminus \{i\}$, $R' = R \setminus \{j\}$.

Switching Lemma (for PHP)

Definited for the canonical matching decision tree for f_{p} to T(f), is defined as follows:

• If
$$f = 1$$
, $T(f|_{p} : \cdot 1$

Otherwise Let to be the first matching term of f.
 Create the complete matching decision tree over the set S'EDUR of pigeons/holes mentioned in C, (can stop early if t, funed to 0 or 1)
 Each leaf is is associated with a matching restriction 6;

Switching Lemma (for PHP)

Example $f = P_{z_i} \vee t_i$

$$P_{2i} \sim P_{1i} P_{2i} + 2i$$

$$t_{2i} \sim t_{2i}$$

$$D = \{1, 2, 3, 4\}$$
 $R = \{1, 2, 3\}$

 $2 \rightarrow 1'$ $2 \rightarrow 2'$ $1 \qquad 2 \rightarrow 2'$ $4 \rightarrow 1'$ $4 \rightarrow 2'$ $1 \qquad 4 \rightarrow 2'$ $1 \qquad 1$

 $\left.\begin{array}{c} 2 \rightarrow 3' \\ 1 \rightarrow 1' \\ 1 \rightarrow 1' \\ 1 \rightarrow 2' \end{array}\right\} \quad Query \quad vars (t_2)$

Switching Lemma (for PHP)

<u>Random</u> <u>Restrictions</u> Q_n^P : set of all matching restrictions p over D=[n+1], R=[n] such that p leaves pn+1 pigeons, pn holes unset

Lemma (PHP switching Lemma)
Let f be an r-disjunction

$$Pr \left(T(f|_{p}) \text{ has depth } \ge s \right] \le (IIp^{4}n^{3}r)^{s}$$

 $p^{-}Q_{n}^{p}$

Switching Lemma (for PHP)
Random Restrictions
$$Q_{n}^{P}$$
: set of all matching restrictions p over $D=(n+1)$, $R=(n)$
such that p leaves path progeons, parholes unset
Lemma (PHP Switching Lemma)
Let f be an r -disjunction
Then Pr $[T(f|_{1})$ has depth $\geq s$] $\leq (6p^{4}n^{3}r)^{s}$ worse bound than before
 $p \sim Q_{n}^{2}$
 $LS \sim exp(n^{6d})$

Parameter settings Let
$$n_0=n$$
, $n_1=number of unset holes after round i. $n_{i+1}=P_{i+1}, n_i$, $n_0=n$
set $P_{i+1}=n_i^{5/6}$, $r_i=s_i < n_i^{76}$ so prob. sL fails for a random p is $\sim (n_i^{76}n_i^2n_i^2)^r = (n_i^{-26} + \frac{18}{2} + \frac{1}{2})^r < (\frac{1}{2})^r$
(Note at stage i, $r_i \approx n_i^{76}$, where $n_i \sim n_{i+1}^{76}$)
set $d < a^{5-1}$ so $\forall i=1...d-1$, by union bound $\exists p_i$ that is good at round i
For base case, need $n' = n_i^{6-1} > r_{1-1}$ which holds when $r_i = s_i < c n_i^{76}$
This gives Lower bound: $d > a^{n_{i+1}} \sim a^{n_i^{6}}$$

Reducing a depth d formula L by
$$P, \dots, P_{d-1}$$

1. Without loss of generality:
-L is depth d formula over basis 7, V
 $(A(F_i, F_K) \equiv \neg V(n_{i,\dots}^r, F_K))$
- Bottom 2 layers are r-disjunctions
2. Let $P_i \in Q_i^P$ be metching restriction such that $\forall i \ \mathcal{T}(f_i|_{P_i})$ had depth $\leq r$
 $(P_i \text{ guaranteed to exist by PHP SL})$
3. Define H_{P_i} : For all bottom-level (convert $1f_i|_{P_i} \rightarrow \neg \mathcal{T}(f_i|_{P_i}) \rightarrow \mathcal{T}^c(f_i|_{P_i})$
 $(Light Wae) \qquad (Light Wae) \qquad (Convert $\frac{1}{2}(\neg f_i|_{P_i}, \neg f_i|_{P_i}) \rightarrow \frac{1}{2}(\neg f_i|_{P_i})$
 $(Light Wae) \qquad (r-disjunction)$$

Aca-Frege Lower Baund for PHPMI

- So far we have the following "PHP" switching lemma, which (usin parameter settings we gave) can be applied iteratively d-(times to obtain a good sequence of restrictions $p_{1,...}, p_{d-1}$ such that under $p=p_1...p_{d-1}$, we can convert $\pi = \{L_1, ..., L_m\}$ into another sequence of formulas $\pi^* = \{L_1^*, ..., L_m\}$, where L_1^* are depth = r matching decision trees obtained by successively applying $p_{1,2}..., p_{d-1}$ to obtain $L_1^*, ..., L_d^{d-1} = L_d^*$ (as described in last slide).
- To finish the lower bound we need to reach a contradiction by shaving that if the pool T is sound, then TI is also a 'locally" sound proof of PHPⁿ⁺¹ on the remaining n+1 unset pigeons and n' unset holes

Acd Frege Lower Baund for PHPMI

<u>Defn</u> (k-evaluation)Let Γ be a set of formulas closed under subformulas, over $D^{n+1} \cup R^{n-1}$ A k-evaluation for Γ is an assignment of complete matching decision Trees T(A) to all formulas A in Γ such that : (1) T(A) has depth $\leq k$ $\forall A$

(4) If $A^{-1}u$ a matching disjunction then $\mathcal{T}(A)$ represents $V Disj(\mathcal{T}(A_i))$

Aca-Frege Lower Bound for PHPMI

Defn (k-evaluation)

Let I be a set of formulae closed under subformulas, over DthIUR^M. A K-evaluation for I is an assignment of complete matching decision Trees T(A) to all subformulae A in I such that: (1) op(A) has depth = K VA

(3) $T(P_{ij})$ is the full matching tree over $D^{n+1} \cup R^n$ with leaf L (abulled L if T(L) contains E(j), and O our (4) if $A^- \cup a$ matching disjunction then T(A) represents V $Disj(T(A_i))$

Lemma (obtaining a k-evaluation) Let TI be a size & depth-& Frege proof of PHP_n^{HI} . Let $P_{11}P_{23}$. P_{d_1} be the good restrictions guaranteed to exist by PHP switching Lemma. Then: there exists a k-evaluation for $\Gamma = \{all \ subformulas \ occurring \ in \ TI[P_{11}-P_{d_1}]\}$ over $D^{hH} \cup R^{h}$

Proof of (*) omitted, but proven inductively on depth d
[Let
$$F_i = all$$
 subformulais occurring in TT , + have depth $\in i$
Then after stage i, we have a k-evaluation for the formulas $F_i|_{P_i - P_i}$.
 $k = r_i$

Base case Let
$$TI = \{L_{1}, .., L_{m}\}$$
 be alleged proof of $PHP_{n}^{n_{1}}$
It is left to argue that if we have a k-evaluation T for
all subformulas of $TI|_{p}$ over $D^{n+1} \cup R^{n}$ where $K \leq n'$, then
we reach a contradiction.
Why?
On the one hand we can show:
(A) All axions of $TI|_{p}$ convert to all 1 trees and
the frequencies preserve 1-trees, so every formula in TIp
converts to a 1-tree.
On the other hand:
(B) The last line $L_{m}|_{p}$ converts to an all 0-tree

PHPⁿ⁺¹ consists of the disjunction of the following formula (1) $\neg (\neg P_{i,k} \lor \neg P_{j,k}) \quad \forall i \neq j \leq n+1, K \leq n$ (2) $\neg (P_{i,j} \lor P_{i,2} \lor \cdots \lor P_{i,n}) \quad \forall i \leq n+1$

(1) Since
$$T(\neg(P_{ik}, \neg P_{jk})) = \left[T(\neg P_{ik}, \neg P_{jk})\right]$$
, (tree for $\neg P_{ik}, \neg P_{jk}$ with all leaf values toggled)
to show $T(\neg(\neg P_{ik}, \neg P_{jk}))$ is a D-tree, want to show $T(\neg P_{ik}, \neg P_{jk})$ is a l-tree

$$\mathcal{T}(\neg P_{ik} \lor \neg P_{jk}) = \mathcal{P}\left(\mathsf{Disj}\left(\mathcal{P}(P_{ik})\right) \lor \mathsf{Disj}\left(\mathcal{P}(P_{jk})\right)\right)$$

Similarly
$$\mathcal{T}(\mathcal{P}_{2,3})$$
:

$$\begin{aligned} \mathcal{T}(\neg P_{1,3}, \neg P_{2,3}) &= \mathcal{T}\left(\bigvee_{\substack{all \ 1-paths \\ G \ in \ 9(\neg P_{1,3},)}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ G \ in \ 9(\neg P_{1,3},)}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ G' \ in \ 9(\neg P_{2,3},)}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}} M_{G} \lor \bigvee_{\substack{all \ 1-paths \\ \gamma(\neg P_{2,3},)}}} M_{G} \lor \bigvee_{\substack{all$$

(z) show
$$\mathcal{P}\left(\neg\left(P_{i}, \vee P_{i}, \vee \dots \vee P_{i}\right)\right) = 0$$
 -tre

It suffices to show
$$\mathcal{T}(P_{i_1} \vee \dots \vee P_{i_n})$$
 is a 1-tree
 $\mathcal{T}(P_{i_1} \vee \dots \vee P_{i_n})$:

•

To conclude: The Any Aco - Frye proof of PHP^{HI} requires Size 2nd

See [Fu, Urquhart] for omitted lemmas + for a Nice presentation of entire argument. References