
Announcements

· Presentations on April 17 : Upload video by April 12
Presentations on April 24 : Upload video by April 19

Videos : 20 mins

Class Presentation : 10 mins plus 5-10 mins discussion

· Ion-1 office hours to discuss your presentation : Today 5-7 pm
and next Thurs 5-7 pm

· HWz posted

·
Scribe Notes : 1st draft due one week after lecture



Today :

Upper Bounds for Random o semi-Randon CNEs

Applications : Lower Bounds for LDCs
,

LCC's

Other Nontrinal Upper Bounds and Open
Q's



RANDOM K-CNFS

- )&
,
n

, k) : pick m=In clauses of width k

for 10 suff large frg(d ,
n

, k) UNSAT W. h.p .

1 = = = = - = Threshold
⑪

probability I Below almost certainly satisfiable

SATISFIABLE ① Above almost certainly unsatisfiable

#

↑ i

0 - 111
**
* 4

.267 A -> =



Resolution-Based Algorithms for random KINF
passing transition point

& goes absolutely

-↑
Noticed

*
Worst-case runtime

1 = = = = - = of standard Resolution

based SAT algonthms .

n 22(n/x)

↑

n~ "
*

0 - 111 -

- 4
.267 A - x



MOTIVATION

1 .
Structural properties relate to our

understanding

2. Natural distributions as benchmark

for sat algorithms

3. Lower bounds for particular proof systems
CRES

,
sos) give unconditional

inapproximability for large family of algorithms



WHY IS IT SO HARD TO CERTIFY UNSAT OF RANDOM F ?

counting argument doesn't seem to work :

Circuit complexity :

2
poly() circuits of poly size

&"Boolean functions

Proof complexity
# of proofs of size s # uNsaT formulas



Hypotheses of Feige, Krajicek/Ruzborov

Meth (Refutation algorithm) Algorithm A is a refutation algorithm
for random KSAT

,
+ ~F(&

,
n

, 1) if : · A outputs YES with probability >2
· A outputsNo ifa is satisfiable

Feige's Hypothesis 713 such that

There isNo polytime refutation algorithm for fr&,
n

,
1):

↑

Krajicek/Razborov Hypothesis : 5 such that

No proof system can efficiently refutefr(a,
n

,
1):



UPPER BOUNDS FOR RANDOM SAT

~Resolution Posizesa
(Beame

, Kmp, P, Saks]

~
(n"llogn (

*
Frege m -n

+4 *- polysized refutations
east but no

[Feige, Kim ,Ofek] known polytima
[Muller , Tzameret] algorithm

to find

refutation



LOWER BOUNDS FOR RANDOM SAT

Poly-size UB Expontial LB

manResolution msn/logn K= 3
" (Chratal

,
Szemerdi] Kool)

(Beame
, Kmp,

P
, Saks] (Beame

, Kop, P
, Saks] ↑I (DenSasson

, Wigderson]
Nullsatz m = O(n) k + 0()

Cgrigoriev]

Poculus
m = O(n) k = 04)
[Buss

, grigoriev, Jrpagliazzo, PJ

Sos m = 0(n) k :0(1)
Egregoriev

,
Schoenebeck]

Cutting k = Ollogn)
Planes

m = poly (n)

↑

I m -n

[Fleming
,

Pankratov
,
P

,
Robere/Hrubes

,
Pudlak]

1 .4

Toge [Feige, Kim
,Ofek]

?

[Muller, Tzameret]



Random& Semi-Random 3SAT

RandomKSAT : Pick Kuniform hypergraph I over (x--Xn] at random.
For each edge LEH

, randomly choose signs be bit ,
1) of

each Literal
.

nu
whether variables in c occurs

positively or Negatively

Semi
.
random KSAT :

Fix arbitrary 3-hypergraph H over Ex
,

-
- xn3

,
with m edges.

For each edge CeH randomly choose b.
,
bu

,
b, 34 ,

13
"hypergraph-

&

Not random.

[Feige-Kim-Oek] : only signs
are

Theorem why there exists polysize Frege refutations for randsen

semirandom 35AT instance
,
for m no clauses

↑
guruswami, Kothan,

Manohan'22



RelutingSemi-Random 3SAT

Creige
,

Kim
,
Ofek]

Theorem why there exists polysize Frege refutations for

semirandom 35AT instance
,

for min clauses Egurus name

- Kothari
, Manohar'z]

Plan
weak refutation for semirandom 3oe

(semil-strong refutation for 3XOR via Feige XOR trick
:

Weakvs Strong refutation of UNSAT CNTF8

weak refutation : proves val(f) < 1 val(f) =max(frachesa
strong refutation : proves val(f) < 1-2

,

> im



RelutingSemi-Random 3SAT

Creige
,

Kim
,
Ofek]

Theorem why there exists polysize Frege refutations for

semirandom 35AT instance
,

for m no clauses Egurus name

Kothari
, Manohar'z]

Plan
weak refutation for semirandom 3oe

(semil-strong refutation for 3XOR via Feige XOR trick
:

Them> Strong refutations for semi-random sxor with mon't

(show val(f) < 1- whp) implies weak refutations&

of semi-randomSAT
,

men't

T
.
Theorem1 : 5 strong refutations of semirandom >XOR via Moore

-

Ipergraph bound.



Semi-strong Refutation for 3XOR

-Theorem I

Let H34
, ...,<) be arbitrary 3-uniform hypergraph over <n

Let4t be semirandom 3XOR given by 3xOR constraints :A↑5
* [04vars)] = b

, .
. . . G raus(m)]=bm3

For mscon(e)
,
whp over 56 40

, 13 m

val(415) - max praction of satisfied constraints ofP = 1- 0 (eugh)

· To refute Ksat via strong MOR refutations
.

We will

setl-n's



Hypergraph Moore Bound

K = 2 Cordinary graphs) : Any graph with edges

has a cycle of length Gloga n



Hypergraph Moore Bound

= 2 Cordinary graphs) : Any graph with no edgesZ

has a cycle of length & 2logan (Alon-Hoory Linial 2002)

generalization to kuniform hypergraphs : (k= > here

A "cycle" is an even cover : set of Koedges It' It such that

every vertex
is contained in

& ⑨

an even number of edges in It

3o ·

&

· %

⑨



Hypergraph Moore Bound

FeigeConjecture (2008) :

veso
, Every Kuniform hypergraph It with man( edges

contains an even cover of length llog,

↑
Proven up to poylogn factors Guruswami - Kothari-Manohar'21

Asieh-Kothari-Mohanty '22

H-17-M-correla-Sudakov' 24

(we will scetic a simple prof timepermitting)



~Mistrong Refutation for semirandom 3XOR

-Theorem I
-

Let H = 34 , ...,<) be arbitrary 3-uniform hypergraph over <n

Let4t be semirandom 3XOR given by 3xOR constraints :

PH
,
5
= [0[vars)3 = b, ,

. . . OnEvaus(m).3=bm3Mo
mux praction of patissied constraints&a 1- 0int

For mscon(e)
,

whp over 56 40
, 13 m

Proof : It satisfies conditions of even cover Theorem (Moore bound)
() Find blogn length even cover.

2) Remove all hyperedges in cover
,
Let H = H - even cover

I still has 100m.
- llogn = Mo edges

3) Repeatedly apply even cover theorem
,
partitioning . 99mo hyperedges

ofI into disjoint even covers
,
each of size = elogn

<) Since each even cover is linealy independent, wiz of the even

covers will be unsatisfiable (RIS of equations will sum to - mod 2)

: in total at leastm) constraints must be falsea

:whp val (4) = 1-0(eogn) *



<) Since each even cover is linealy independent, wiz of the even

covers will be unsatisfiable (RIS of equations will sum to - mod 2)

: in total at leastm) constraints must be falsea

:whp val (4) = 1-0 (eogn)

E b
. by

bs
X

, 1X2 + Yy = b,

· ⑨ xz+ Xy + Xy = ba
·6 Xy + yz + Xy = b3· ju

Y + Y
,2

+ X
,

= by
&·

-
by x

+

Xy + Xy
= by UNsat Iff b,bt+.. + bm = 1 mod I

by · g
x

y
+yj + Xq = b,

⑧ 9 bs X8 + Xq + X
, 0

= by

↑ by X
, 0

+ X + X,z
= by

even cover It' +



Proof of Hypergraph Moore Bound (1 = 4)

Hypergraph Moore Bound ·

Every Kuniform hypergraph It with m
=n(t edges

contains an even cover of length = Mlogan

Warmup : 1-1
.

Let's show every 4-uiform # with > edges contains

a logh length even cover

8 Let go be a graph on vertices
.

V = (ii) lijan3

edge (i,j) , 11/E9 iff <i
,
j, e3eH and i

,
j = k

,
e

edges in G in 11 correspondence to hyperedges in H

cycles in gy in 11 correspondence with an even cover in H

: follows by graph moore bound



Proof of Hypergraph Moore Bound (1 = 4)

LetH be a -unform hypergraph with > n()* logn = logh edges.

Let K(H) be the leval-e Kikuchi graph of H :

Vertices of Ke(H) : all (*) e- subsets of In
Edges of Ke(H) : (S

,T) is an edge if SOTH

S '
T

ig ↑
(S

,
T) < edge (ke(H)

if f 31 ,
2

,
4

,63-H
⑳



Proof of Hypergraph Moore Bound (1 = 4)

LetH be a -unform hypergraph with > n()* logn = logh edges.

Let K(H) be the leval-e Kikuchi graph of H :

S T +
Vertices of Ke(H) : all (*) &- subsets of In ⑳

Edges of Ke(H) : (S
,T) is an edge if SotH color edge (S

, T) in ReCH)
by c = ST

Raim
A closed walk in KeCH) -> even cover in I
where some color appears an Leven cover-set of C's that occur an odd # o times in walk)odd # of times

k= 4 S, Sz
l=4 Se 3

,
052 = 4 = 21

,
2

,
5

, 63
5 ↳ 1920

3 3
53

505
= 2 = 23

,
4

,
7

, 83

Sosy = 3 = 45
,

6
,

9
,
103

S · S 56
7 Sy0Sj = < = 27

,
8

,
4

,
12)

S
8

3 ·92 Sj0Sy = 4 = 79
,

10
,

1
,
2)

Sj4
·

Sy Ss Sy Spos
,

=

< = 911
,

12
,

1
,
23

closedWalk in KeCH)
&

encover in H



Proof of Hypergraph Moore Bound (1 = 4)

Thus it suffices to prove the following Lemma :

~closea

Lemma Let I have no edges .

Thena contains a subgraph geg
with minimum degree d % and at least nole edges.



Proof of Hypergraph Moore Bound (1 = 4)

~closea

rainbow walk

# double count rainbow paths of length l in g)

& has N = (h) vertices

Edges : each CEH contributes [I]) edges to G.

: G has (z)logn ZoNlogNedges ,

so an degree
~ zologN-20 logn

Assume foc that G contains no short closed rainbow walks
.

Let Get be subgraph guaranteed by Lemma
,
mindegree d'3 Slog

N

Let
2 - logN-llogn

(i) # of length rainbow paths in G>Nd · (d 1) · (d'2) ... · (d 1-1) = Nisaje = 11 .
50)9

(ii) # lenyth-g rainbow paths = N2 · g ! 54g*(4)2)if a closed rainbow walk
You V then setf colors on every

rainbow welk must use
contradiction since 4931 .

8d'
same set of a colors



-theorem2 Semi-strong KXOR Refutations -> Weak KSAT Refutations

Semirandom KSAT :

Fix arbitrary 3-hypergraph H over Ex
, --Xn3 ,

with m edges.

For each edge CEH randomly choose ba
,
b2

,
bi 34

,
13

For each clause (C
,
b
, be

,
ba) its Fourier representation over # (XE 13) is :

P(b
,
ibnib) + (b

,x + butz + b
, Xy + b

,
b X

, Xz + bbx + baby tex + bbab ***)

Ephe : < = Ex
c Xe

,
ty3 biobibs so clause is (x

,
r*V4s)

Fourier representation = + ( - x
,

- xz - Xy + 4,xz + X
,
y = X2xy - XXnxy)

Dejn
Let 4: [ (C ,

b)
,
(

,
b2)

...
km

, bim)] be a semirandom 3SAT

· maxThen val(4) =
x651

,

13 P(4 ,
b") X val(P) is max

fraction of satisfied

clauses in 4



=

Dejn
Let 4: [ (C

,
b)

,
(

,
b2)

...
km

, bim)] be a semirandom 3SAT

max
Then val(y) =

xib")
val(i) is max

,

fraction of satisfied clauses i a

-

write
pas sum of 8 polynomials :

Po = all constant thms

P: all linear terms

P2 = all quadratic terms

Po = all degree b terms (xORs)

max Pval(4)

=maxPoteawe'll ↓ (1-OleTogn)
show



max Pval(4)

=maxPoteawe'll ↓ (1-OleTogn)

Assuming these upper bounds,

and m = Old Flogn)
val(4) = = + (2) + -(1 -0(on)) = 1 + 1) - 0) etogu)

y

Mog setting e achiea

choosing Ion"s gives mon'*

So it is left to proce the
claimed

upper
bounds.



eyee3termsBOR pa follows by Theorem 1 !

UPPER bounds for Linean port (p , ) and quadratic part (P2) is easier.

We sketch profs of these next.

earterms

say X
:

occurs in n
, many clauses

.

Because signs are random
,

the coficient in front of X
:
has expectation~

·: P ,

= in Xi

: Max P:===0
X = 3- 1

, 134 ↑

Cauchy-Swartz



-uadratic terms can write quadratic part as MX) aA
where An : uxn matrix with 1 in (ii) iff Xi <

X,

an
= coefficient of XiX;

in Former expansion of clause (C
,
bY

Note nonzero entres of 29,
A
,

are determined by H
,

but sign (1) is random.

·(,
As) = 11 Sally since Kalle = In

By Matrix Khintchine (Matrix cheenof bound) :
more complicated any"SanbellemingDrain

·: MaxPantelle



-Remarkek proof can be formalized in poysized prese pf-

the hand part (Therem1) actually formalized in much weaker

system-poly-size PC refutation

(2) No improvements to m = *** given in original FRO paper.

(3) Strong LBs for Resolution refutations :

for mansclauses
,

Resolution refutations require exponential size



Application : Locally Decodable Codes

0 1 0 1 1 0 I D 1 10100101/100

be 50
,
13. X 90

, 131



Locally Decodable Codes

0 1 0 1 1 0 I D 110100101100# ①

be 50
,
13. X 90

, 131

- q
= 3-query local decoder

ic(k] bi 50
, 13

- - Decoder -

(9
,

<
,
5) - LDC : given received word x with <S fraction of errors,

for any position i, Decoder (i, x)
= X:

with probability =13

Applications : PCP's
,
Private Information Retrieval

,
secret sharing

,

worst-to-avg case reductions
,

Distributed computation, ...
↑

&en : Does there exist q = 0 (1) LDC with n = poly (K) ?



Locally Decodable Codes

0 1 0 1 1 0 I D 1 10100101/100
# ① &

be 50
,
13. X 90

, 131

- q
= 3-query local decoder

ic(k] Decoder bi 50, 13
->

Best constructionK -> 2"Matching Vector codes" [yel08,
Efr09

, Dyyil)

*New Lower Bounds *

m =M(k3) for 3-query LDC's (AgRM23) (see references at ind)
alk)

n = 2 for linear 3query JCC's /Kothari
,

Manohar'23)



SEMI-RANDOM XORS LDC LOWER BOUNDS

0 1 0 1 1 0 I * 1101001011100
↳ &

be 50
,
13. X 90

, 131

* Breakthrough Lower Bounds : - q
= 3-query local decoder

formalized as system of semi-random ic(k]Decoder 10
, 3

XOR constraints : 7 = Sig + 90
, 13" : Fo3

H :

NomaFormMeliosh matchings-,, each h over- i
Decoding : on ic(K] pick random Deat

,, outputEx mod ↑

System of XORs : VBESO,
1" : Fo = GUIL,

Celti : 3 X-+ B : b
v = C Proof based on

-Lemma : To highly UNSAT => LB e(u)· for LDC's ideas in
for random -

semirandom CSP

refutations



Other Notrinal Upper Bounds

[Razborougs] Formalized "fDC" by propositional CNF

Proved standard Lower Bounds :
PORITY DAC3Clique & monotone P/pc

have polysise EF profs

[BussOb)
,
(Aisenberg

,
Boret

,
Buss] Proved several combinatorial properties

believed to be hard for Frege have efficient Frege profs

[u : Proved existence of expander graphansee1 proce with poysied of prefs

[Pich] : PCP Theorem has polysize of proofs
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