
Propositional Proof Complexity
Assignment # 2

Due: Monday April 28, 2025, 11:59pm

1. Recall the negation of the induction principle, ¬Indn: the underlying variables
are xi, i ∈ [n], and the clauses are:

(i) (x1);

(ii) (¬xn);

(iii) For all i ∈ [n− 1]: (¬xi ∨ xi+1).

Give a constant-degree Polynomial Calculus refutation of ¬Indn.

2. Recall the mod 2 counting principle, Mod2n, discussed in Homework 1, that
asserts that there is no perfect matching on an odd number of vertices. The
negation of the mod 2 counting principle, ¬Mod2n is a CNF formula with
underlying variables xi,j for i 6= j, i, j ≤ 2n + 1 to represent whether or not
there is a matching between vertices i and j. The clauses of ¬Mod2n are of
two types:

(i) For every i ≤ 2n+1 we have the clause (∨j 6=i xi,j) stating that each vertex
is included in at least one matching.

(ii) Secondly, for every i, j, k ≤ 2n + 1, i 6= j 6= k, we have the clause (¬xij ∨
¬xi,k), stating that every vertex i is matched with at most one other vertex.

Recall the negation of the bijective pigeonhole principle, ¬Bi-PHPn+1
n . The

underlying variables are pi,j, i ∈ [n+ 1], j ∈ [n], and the clauses are:

(i) For every i ∈ [n+ 1], we have the clause (∨j∈[n]pi,j);
(ii) For every i ∈ [n+ 1], j 6= j′ ∈ [n]: (¬pi,j ∨ ¬pi,j′);

(iii) For every j ∈ [n]: (∨i∈[n+1]pi,j);

(iv) For every i 6= i′ ∈ [n+ 1], j ∈ [n]: (¬pi,j ∨ ¬pi′,j).

Clauses of type (i) and (ii) express that every pigeon is mapped to exactly one
hole, and clauses (iii),(iv) express that the mapping is bijective.

Prove that if ¬Mod2n has a polynomial-sized Resolution refutation, then so
does the negation of the bijective pigeonhole principle, ¬Bi-PHPn+1

n .

3. Search versus Decision Problems. A randomized depth-d decision tree for a
search problem S ⊆ 0, 1n× [m] is a collection of decision trees T = {T1, . . . , Tq}
satisfying:

(i) Each Ti is a deterministic decision tree over ~x = x1, . . . , xn with each leaf
of Ti labelled by some j ∈ [m];

(ii) For every assignment α ∈ {0, 1}n, Pri∈[q][(α, Ti(α)) ∈ S] ≥ 2/3.
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It is known that the randomized decision tree complexity of any function is at
most the deterministic decision tree complexity squared: Rcc(f) ≤ Dcc(f)2.

In this problem you will prove that in contrast, there is no polynomial rela-
tionship between deterministic and randomized decision tree complexity for the
more general class of search problems. Assume that M = 2m, and N = 2n (so
both M and N are powers of two), and let n = 2m. Consider two functions
F : [N ]→ [M ], and G : [M ]→ [N ]. Since M < N , the composed function G◦F
cannot be the identity mapping, so we can define the associated total search
problem, Find-ViolM,N : The variables of Find-ViolM,N are: Fi,j, i ∈ [N ],
j ∈ [m], and Gk,l, k ∈ [M ], l ∈ [n]. We view Fi,1, . . . , Fi,m as the bit repre-
sentation of the element F (i) ∈ [M ] that pigeon i is mapped to, and similarly
Gk,1, . . . , Gk,n is the bit representation of the element G(k) ∈ [N ] that k is
mapped to. On input F,G, Find-ViolM,N(F,G) is the set of i ∈ [N ] such that
G(F (i)) 6= i; that is, valid solutions are elements i ∈ [N ] that are not mapped
to themselves by the composed function G ◦ F .

(a) Prove that there are constant-error randomized decision trees solving the
search problem Find-ViolM,N(F,G).

(b) Prove that any deterministic decision tree for Find-ViolM,N requires
depth Ω(M).

4. (EXTRA CREDIT) Sherali-Adams versus Nullsatz. Recall the standard equa-
tional translation of a clause into an equivalent polynomial equation, e.g.,
(x1 ∨ ¬x2 ∨ x3) becomes (1 − x1)(x2)(1 − x3) = 0. In this question we will
compare Nullsatz versus SA refutations for unsat 3CNFs; in order to make this
comparison fairly, in both cases we assume the underlying field is the reals,
and the translation is equational. Let P = {p1, . . . , pm} be a set of polynomial
inequalities over x1, . . . , xn. Recall that a Sherali-Adams refutation of P is a set
{J0, J1, . . . , Jm} of conical juntas such that J0+

∑m
i=1 Jipi = −1. In this problem

we consider the relative strength of SA refutations of unsatisfiable 3CNFs with
and without the leading junta J0.

(a) Prove that degree-d SA0 refutations of unsat 3CNFs (translated into equa-
tions) over the reals is equivalent to degree-d NS refutations.

(b) Show that degree-d SA over the reals can simulate width-d Resolution.

(c) Show that degree-d SA0 cannot simulate degree-d SA (over the reals) by
exhibiting a family of unsatisfiable CNFs that require Ω(log n)-degree SA0

refutations but that have SA refutations of degree O(1).

Hint: You may use parts (a),(b) from this question, in addition to results
that were discussed in class.
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