
CS 4995 Notes (S. Cook and T. Pitassi) Fall, 2022

Predicate Calculus
(First-Order Logic)

Syntax

A first-order vocabulary (or just vocabulary or language) L is specified by the following:

1) For each n ∈ N a set of n-ary function symbols (possibly empty). We use f, g, h, ... and
also +, ·, s as metasymbols for function symbols. A zero-ary function symbol is called
a constant symbol.

2) For each n ≥ 0, a set of n-ary predicate symbols (must be non-empty for some n).
We use P,Q,R, ... and also <,≤,= as metasymbols for predicate symbols. A zero-ary
predicate symbol is the same as a propositional atom.

In addition, the following symbols are available to build first-order formulas:

1) An infinite set of variables. We use x, y, z, ... and sometimes a, b, c, ... as metasymbols
for variables. (Generally distinct letters x, y, z stand for distinct variables.)

2) connectives ¬,∧,∨ (not, and, or)

3) quantifiers ∀,∃ (for all, there exists)

4) (,) (parentheses)

Terms and Formulas are built from these together with the function and predicate symbols
from L, as described below.

The standard vocabulary of arithmetic is

LA = [0, s,+, · ; =]

0 constant (zero-ary function symbol)
s unary function symbol
+, · binary function symbols
= binary predicate symbol

18

Terms (or expressions) are certain strings built from variables and function symbols, and are
intended to represent objects in the universe of discourse.

Definition of an L-term (Here L is a first-order vocabulary):

1) Every variable is a term.

2) If f is an n-ary function symbol of L and t1, . . . , tn are L-terms then ft1 . . . tn is an
L-term.

We will drop mention of L when it is not important, or clear from context.

Recall that a 0-ary function symbol is called a constant symbol (or sometimes just a constant).
We use e as a metasymbol for constants. Also 0 and 1 are constants. Note that all constants
in L are L-terms.

Examples of L-terms (where f is binary and g is unary):
fgex, fxy, gfege. These are parsed f(g(e), x), f(x, y), g(f(e, g(e)) respectively.

Unique Readability Theorem for Terms: If terms ft1 · · · tk and fu1 · · ·u` are syntacti-
cally equal, then k = ` and ti =syn ui, 1 ≤ i ≤ k.

Proof: Similar to the Unique Readability Theorem for propositional formulas (see page 2).
To prove the lemma on weights, we assign a weight of n− 1 to each n-ary function symbol,
and -1 to each variable. �

Exercise 1 Carry out the details in the above argument.

Notation: We use r, s, t, ... to denote terms.

In the vocabulary for arithmetic LA, in practice we write +, · as though they were infix
operators, even though officially they are prefix operators. Thus

Notation (t1 · t2) =syn ·t1t2
(t1 + t2) =syn +t1t2

Thus examples of our way of writing LA terms are sss0, ((x+ sy) · (ssz + s0))

Definition of first-order formula in the vocabulary L (or L-formula, or just formula):

1) Pt1 · · · tn is an atomic L-formula, where P is an n-ary predicate symbol in L and
t1, · · · , tn are L-terms.

2) If A and B are L-formulas, so are ¬A, (A ∧B), and (A ∨B)

3) If A is an L-formula and x is a variable, then ∀xA and ∃xA are L-formulas.

19

As in the case of propositional formulas, we use the notation
(A ⊃ B) for (¬A ∨B)
(A↔ B) for (A ⊃ B) ∧ (B ⊃ A)

Examples of formulas: (¬∀xPx ∨ ∃x¬Px) (Here P is a unary predicate symbol.)
(∀x¬Qxy ∧ ¬∀zQfyz). (Here Q is a binary predicate symbol and f is a unary function
symbol.)

The Unique Readability Theorem holds for first-order formulas.

Notation r = s stands for = rs
r 6= s stands for ¬(r = s)

Example: Goldbach’s conjecture: Every even integer greater than 2 is the sum of two
primes.

∀x((Even(x) ∧ x > 2) ⊃ ∃y∃z(Prime(y) ∧ Prime(z) ∧ x = y + z))

Here Even, Prime are unary predicate symbols.
> is a binary predicate symbol (we use infix notation).
2 is a constant symbol.
+ is a binary function symbol.

This can also be stated as a formula in the vocabulary LA, since the predicates Even, Prime,
and > can be defined in terms of s,+, ·, and =. For example, Even(x) can be defined by the
formula ∃y(x = y + y).

Free and Bound Variables

Definition: An occurrence of x in A is bound iff it is in a subformula of A of the form ∀xB
or ∃xB. Otherwise the occurrence is free.

For example, in the formula ∃y(x = y+y) (which defines Even(x) as above) the occurrence of
x is free, while the occurrences of y are bound. Intuitively the meaning of a formula depends
on the values assigned to its free variables, but no value need be assigned to a bound variable
to give the formula meaning.

Notice that a variable can have both free and bound occurrences in one formula. For example,
in Px ∧ ∀xQx, the first occurrence of x is free, and the second occurrence is bound.

Definition: A formula A or a term t is closed if it contains no free occurrence of a variable.
A closed formula is called a sentence.

Semantics of Predicate Calculus

In the propositional calculus, a truth assignment provides meaning to a formula. In the
predicate calculus, we need a more complicated object, called a structure (or interpretation)

20

to give meaning to formulas and terms. If L is a first-order vocabulary, then an L-structure
M consists of the following:

1) A nonempty set M called the universe of discourse (or just universe). Variables in an
L-formula range over M .

2) For each n-ary function symbol f in L, an associated function fM : Mn 7→M .

3) For each n-ary predicate symbol in L, an associated relation PM ⊆Mn. If L contains
=, then =M must be the true equality relation on M .

Notice that the predicate symbol = gets special treatment in the above definition, in that =M

must always be the true equality relation. Other predicate symbols may be interpreted by
arbitrary relations of the appropriate arity. For example, if L contains the binary predicate
symbol <, then <M can be any binary relation on the universe M , and is not necessarily an
order relation.

Every L-sentence becomes either true or false when interpreted by an L-structure M, as
explained below. If a sentence A becomes true under M, then we say M satisfies A, or M
is a model for A, and write M |= A.

Definition: We say that a structureM is finite if the universe M ofM is finite. Otherwise
M is infinite.

If A has free variables, then these variables must be interpreted as specific elements in
the universe M before A gets a truth value under the structure M. For this we need the
following:

Definition: An object assignment σ for a structure M is a mapping from variables to the
universe M .

Below we give the formal definition of notionM |= A[σ], which is intended to mean that the
structure M satisfies the formula A when the free variables of A are interpreted according
to the object assignment σ. First it is necessary to define the notation tM[σ], which is the
element of universe M assigned to the term t by the structure M when the variables of t
are interpreted according to σ.

21

Basic Semantic Definition

Let L be a vocabulary, let M be an L-structure, and let σ be an object assignment for M.

Each L-term t is assigned an element tM[σ] in M , defined by structural induction on terms
t, as follows (refer to the definition of L-term, page 19):

a) xM[σ] is σ(x), for each variable x

b) (ft1 · · · tn)M[σ] = fM(tM1 [σ], . . . , tMn [σ])

Notation: If x is a variable and m ∈ M , then the object assignment σ(m/x) is the same as
σ except σ(m/x)(x) = m.

For A an L-formula, the notion M |= A[σ] (M satisfies A under σ) is defined by structural
induction on formulas A as follows (refer to the definition of formula):

a) M |= (Pt1 · · · tn)[σ] iff 〈tM1 [σ], . . . , tMn [σ]〉 ∈ PM

b) M |= (s = t)[σ] iff sM[σ] = tM[σ]

c) M |= ¬A[σ] iff not M |= A[σ].

d) M |= (A ∨B)[σ] iff M |= A[σ] or M |= B[σ].

e) M |= (A ∧B)[σ] iff M |= A[σ] and M |= B[σ].

f) M |= (∀xA)[σ] iff M |= A[σ(m/x)] for all m ∈M

g) M |= (∃xA)[σ] iff M |= A[σ(m/x)] for some m ∈M

This method of giving meaning is sometimes called Tarski semantics, named after the im-
portant logician Alfred Tarski.

Note that item b) in the definition of M |= A[σ] follows from a) and the fact that =M is
always the equality relation.

If t is a closed term (i.e. contains no variables), then tM[σ] is independent of σ, and so we
sometimes just write tM. Similarly, if A is a sentence, then we sometimes write M |= A
instead of M |= A[σ], since σ does not matter. (See the Corollary on the next page.)

Example: Let L be the vocabulary {;R,=} and let M be the L-structure whose universe
M = N and such that RM(m,n) holds iff m ≤ n. Then M |= ∃x∀yR(x, y) (since 0 is the
least element of N) but M 6|= ∃y∀xR(x, y) since there is no largest natural number.

Standard Structure: The standard structure N for the vocabulary LA has universe M = N
= {0, 1, 2, ..., }, sN(n) = n+1, and 0,+, ·,= get their usual meanings on the natural numbers.

22

Example: N |= ∀x∀y∃z(x + z = y ∨ y + z = x) (since either y − x or x − y exists) but
N 6|= ∀x∃y(y + y = x) since not all natural numbers are even.

In the future we sometimes assume that there is some first-order vocabulary L in the back-
ground, and do not necessarily mention it explicitly.

Notation: In general, Φ denotes a set of formulas, A,B,C, ... denote formulas, M denotes
a structure, and σ denotes an object assignment.

Lemma: If σ and σ′ agree on the free variables of A, then M |= A[σ] iff M |= A[σ′].

Proof: Structural induction on formulas A.

Corollary: If A is a sentence, then for any object assignments σ, σ′, M |= A[σ] iff M |=
A[σ′].

In view of the Corollary, if A is a sentence, then σ is irrelevant, so we omit mention of σ and
simply write M |= A.

Definition:

a) A is satisfiable iff M |= A[σ] for some M and σ.

b) M |= Φ[σ] iff M |= A[σ] for all A ∈ Φ. (We may omit mention of σ if Φ is a set of
sentences.) We say Φ is satisfiable if M |= Φ[σ] for some M and σ.

c) Φ |= A iff for all M and all σ, if M |= Φ[σ] then M |= A[σ].

d) |= A (A is valid) iff M |= A[σ] for all M and σ.

e) A⇐⇒ B (A and B are logically equivalent, or just equivalent) iff for all M and all σ,
M |= A[σ] iff M |= B[σ].

Φ |= A is read “A is a logical consequence of Φ”. This relation is of FUNDAMENTAL
IMPORTANCE. Do not confuse this with our other use of the symbol |=, as inM |= A (M
satisfies A). In the latter, M is a structure, rather than a set of formulas.

Note that |= is a symbol of the “meta language” (English), as opposed to ¬,∨,∧,∀,∃, which
are symbols of the “object language”.

As in the propositional case, if Φ = {B1, . . . , Bn}, then we sometimes write B1, . . . , Bn |= A
instead of {B1, . . . , Bn} |= A.

Examples:

1 (∀xA ∨ ∀xB) |= ∀x(A ∨B), for all formulas A and B.

Proof: We follow the definition of Φ |= A above. Let M be any structure and let
σ be any object assignment. Assume L.H.S. is true, i.e. M |= (∀xA ∨ ∀xB)[σ].

23

Then following the Basic Semantic Definition, M |= (∀xA)[σ] or M |= (∀xB)[σ]. Say
M |= (∀xA)[σ]. Then M |= A[σ(m/x)] for all m ∈ M . Then M |= (A ∨ B)[σ(m/x)]
for all m ∈M . Therefore M |= ∀x(A ∨B)[σ].

Similarly for the case M |= (∀xB)[σ]. �

2 ∀x(A ∨B) |= (∀xA ∨ ∀xB)? No, not necessarily.

Take A =syn Px, B =syn Qx, define the structure M to have universe M = N,
define PM to be the set of even natural numbers, and QM to be the set of odd
natural numbers. Then M |= ∀x(Px ∨ Qx) (every number is even or odd), but not
M |= (∀xPx∨∀xQx) (it is not the case that either all numbers are even or all numbers
are odd).

3 ¬∀xA⇐⇒ ∃x¬A, for all formulas A.

¬∃xA⇐⇒ ∀x¬A, for all formulas A.

(∀xA ∧ ∀xB)⇐⇒ ∀x(A ∧B), for all formulas A, B.

∃x(A ∨B)⇐⇒ (∃xA ∨ ∃xB), for all formulas A, B.

∃x(A ∧B) |= (∃xA ∧ ∃xB), for all formulas A, B.

NOT (∃xA ∧ ∃xB) |= ∃x(A ∧B) in general

∀x∀yA⇐⇒ ∀y∀xA
∃x∃yA⇐⇒ ∃y∃xA
∃y∀xA |= ∀x∃yA, for all formulas A.

NOT ∀x∃yA |= ∃y∀xA in general

∀xA |= ∃xA, because of our requirement that every universe M must be nonempty.

∀x∀y(x = y ⊃ fx = fy) is valid.

∀x∀y(fx = fy ⊃ x = y) is NOT valid.

Exercise 2 Verify each line in item 3 above. For the two lines beginning NOT give specific
formulas A (and B) for which the relation is false, and show it is false by giving a specific
structure which satisfies the left hand side but not the right hand side. For the last line, give
a structure which does not satisfy the formula.

Exercise 3 Show that {P0, Ps0, Pss0, ...} 6|= ∀xPx by giving a specific structure.

Exercise 4 Consider the following four formulas over the vocabulary LA:

P1: ∀x(sx 6= 0)
P2: ∀x∀y(sx = sy ⊃ x = y)
P3: ∀x(x+ 0 = x)
P4: ∀x∀y(x+ sy = s(x+ y))

24

Prove from the definition of |= that

P1,P2,P3,P4 6|= ∀x∀y(x+ y = y + x)

Hint: Think of + as string concatenation.

Exercise 5 Show that ∀x(gfx = x) is NOT a logical consequence of ∀x(fgx = x).

Exercise 6 Let M be a structure and let Φ be the set of all sentences A satisfied by M.
Show that Φ is closed under |=. That is, show that if Φ |= A then A ∈ Φ.

Exercise 7 Give a sentence in the vocabulary L = {; =} which is satisfied by a structure iff
the universe has exactly three elements.

Exercise 8 Give a satisfiable sentence A in the vocabulary L = {;R}, where R is a binary
predicate symbol, such that A has no finite model. (Hint: Think of R as an order relation.)

Exercise 9 Give a sentence A in the vocabulary L = {;R,=}, where R is a binary predicate
symbol, such that for all n ∈ N, n > 0, A has a model whose universe has n elements iff n is
even. (Hint: Think of R as a pairing relation.)

Exercise 10 Give a sentence A of the predicate calculus with the vocabulary L = {;R,=},
where R is a binary predicate symbol, such that a finite L-structure (thought of as a directed
graph with edge relation R) is a model for A iff it is a disjoint union of directed cycles. Now
give an infinite model for A.

Recall that a sentence is a formula with no free variables. Each sentence in the vocabulary
LA (the vocabulary of arithmetic) is either true or false in the standard structure N. Thus
∀x∀y(x + y = y + x) and Fermat’s Last Theorem are true, while ∀x¬(0 = x + x) is false,
and no one knows the truth value of Goldbach’s conjecture. On the other hand, a formula
such as ∀y¬(x = y + y) (“x is odd”) has no truth value under any structure, since it has a
free variable. Of course it gets a truth value in a structure when an object assignment σ is
specified.

Substitution

Syntactic Definition: (s, t are terms)
t(s/x) is the result of replacing all occurrences of x in t by s.
A(s/x) is the result of replacing all free occurrences of x in A by s.

Semantics:

25

Lemma For each structure M and each object assignment σ,

(t(s/x))M[σ] = tM[σ(m/x)]

where m = sM[σ].

Example: LetM be the standard structure N for the vocabulary LA of arithmetic. Suppose
σ(x) = 5 and σ(y) = 7. Let s be the term x + y and let t be the term ss0 (here s is the
successor function in L). Then s(t/x)) is ss0 + y and so (s(t/x))N[σ] = 2 + 7 = 9. On the
other hand, m = tN = 2, so sN[σ(m/x)] = 2 + 7 = 9, and the Lemma is verified for this case.

Proof if the Lemma: Structural induction on t.

Base case: t is a variable. If the variable is x, then both sides of the equation are the same,
namely sM[σ]. If t is a variable y other than x, then again both sides are the same, namely
σ(y).

The induction step is straightforward from the Basic Semantic Definition. �

Exercise 11 Carry out the induction step in detail.

Question: Does the above lemma apply to formulas A? I.e. can we say M |= A(t/x)[σ] iff
M |= A[σ(m/x)], where m = tM[σ]? Something can go wrong.

Example: Suppose A is ∀y¬(x = y+y). This says “x is odd”. But A(x+y/x) is ∀y¬(x+y =
y + y), which does not say “x + y is odd” as desired, but instead it is always false. The
problem is that y in the term x+ y got “caught” by the quantifier ∀y.

Definition A term t is freely substitutable for x in A iff no free occurrence of x in A is in a
subformula of A of the form ∀yB or ∃yB, where y occurs in t.

Substitution Theorem: If t is freely substitutable for x in A then for all structures M
and all object assignments σ, M |= A(t/x)[σ] iff M |= A[σ(m/x)], where m = tM[σ].

Proof: Structural induction on A. The interesting case is when A is ∀yB. (The case when
A is ∃yB is similar). Then we are to prove

M |= (∀yB)(t/x)[σ] iff M |= (∀yB)[σ(m/x)] (1)

where m = tM[σ].

If x does not occur free in ∀yB, then no substitution is done, so the result is easy. (If x, y
are the same variable, then x does not occur free in ∀yB.)

Hence we may assume that x, y are distinct variables and x occurs free in B. Since t is freely
substitutible for x in ∀yB, y does not occur in t.

Following the Basic Semantic Definition, the LHS of (1) holds iff M |= B(t/x)[σ(n/y)] for
all n ∈M . Apply the induction hypothesis to B to obtain

M |= B(t/x)[σ(n/y)] iff M |= B[σ(n/y)(m′/x)]

26

where now m′ = tM[σ(n/y)]. But note that m′ = tM[σ(n/y)] = tM[σ] = m because y does
not occur in t. Hence

M |= B(t/x)[σ(n/y)] iff M |= B[σ(n/y)(m/x)]

Now the RHS of (1) holds iff M |= B[σ(m/x)(n/y)] for all n ∈ M . But σ(n/y)(m/x) =
σ(m/x)(n/y), since x and y are distinct. Hence the LHS holds iff the RHS holds. �

Change of Bound Variable

If a term t is not freely substitutible for x in A, it is because some variable y in t gets caught
by a quantifier ∀y or ∃y in A. One way to fix this is simply rename the bound variable y in
A to some new variable z. It should be intuitively clear that this renaming does not change
the meaning of A. The definition and lemmas below formalize this process.

Definition: ∀zA(z/y) results from ∀yA by change of bound variable provided z does not
occur in A. Similarly for ∃zA(z/y).

Lemma: If z does not occur in A, then ∀zA(z/y) and ∀yA are logically equivalent. Also
∃zA(z/y) and ∃yA are equivalent.

Proof: This follows from the Basic Semantic Definition and the Substitution Theorem.
(Verify this). �

Definition A′ is a variant of A if A′ results by a sequence of changes of bound variables to
subformulas of A.

Theorem: If A′ is a variant of A then A and A′ are equivalent.

This follows from the preceding Lemma and the following general result:

Replacement Theorem: If B and B′ are equivalent formulas and A′ results from A by
replacing some occurrence of B in A by B′, then A and A′ are equivalent.

Exercise 12 Prove the Replacement Theorem, by structural induction on A (relative to B).
The base case is when A and B coincide.

Example: B is ¬∀xPxy, B′ is ∃z¬Pzy, A is ∀y(¬∀xPxy ⊃ Qy). Note that B has a free
variable that is bound in A. A′ is ∀y(∃z¬Pzy ⊃ Qy). By the Replacement Theorem, A and
A′ are equivalent, even though the quantifier ∀y in A catches a variable in B.

A First-Order Gentzen System

We now extend the propositional proof system PK to the first-order sequent proof system
LK. For this it is convenient to introduce two kinds of variables:

• type “free”: a, b, c, ...

27

• type “bound”: x, y, z, ...

A first-order formula A is called a proper formula if it satisfies the restriction that every
variable that occurs free has type free, and every variable that occurs bound has type bound.
Similarly a proper term has no variable of type bound. Notice that a subformula of a proper
formula is not necessarily proper, and a proper formula may contain terms which are not
proper.

The sequent system LK is an extension of the propositional system PK, where now all
formulas A1, ..., Ak, B1, ..., B` in a sequent A1, ..., Ak → B1, ..., B` must be proper formulas.
In addition to the rules given for PK, the system LK has four rules for introducing the
quantifiers.

Notation: In the rules below, t is any proper term and A(t) is the result of substituting t
for all free occurrences of x in A(x). Similarly A(b) is the result of substituting b for all free
occurrences of x in A(x). Note that t and b can always be freely substituted for x in A(x)
because ∀xA(x) and ∃xA(x) are proper formulas.

∀ introduction rules

left
A(t),Γ→ ∆

∀xA(x),Γ→ ∆
right

Γ→ ∆, A(b)

Γ→ ∆,∀xA(x)

∃ introduction rules

left
A(b),Γ→ ∆

∃xA(x),Γ→ ∆
right

Γ→ ∆, A(t)

Γ→ ∆,∃xA(x)

Restriction: The free variable b must not occur in the conclusion in ∀ right and ∃ left.

Example: An instance of ∀-left is

Pbb→ Pbb

∀yPby → Pbb

What is the formula A(y) in this case?

Semantics of first-order sequents

The semantics of first-order sequents is a natural generalization of the semantics of proposi-
tional sequents given on page 10. Again a sequent S =syn

A1, ..., Ak → B1, ..., B`

has the same meaning as its associated formula AS =syn

(A1 ∧ A2 ∧ ... ∧ Ak) ⊃ (B1 ∨B2 ∨ ... ∨B`) (2)

In particular, we say that the sequent is valid iff its associated formula is valid.

28

Definition: [Universal Closure] Suppose that A is a formula whose free variables comprise
the list a1, ..., an. Then the universal closure ofA, written ∀A, is the sentence ∀x1...∀xnA(x1/a1, ..., xn/an),
where x1, ..., xn are new (bound) variables. If Φ is a set of formulas, then ∀Φ is the set of all
sentences ∀A, for A in Φ.

Note that every formula A is valid iff its universal closure ∀A is valid. Also A is a logical
consequence of its universal closure ∀A, but ∀A is not necessarily a logical consequence of A
(for example take A =syn Pa).

Recall that for the propositional system PK, for each rule the bottom sequent is a logical
consequence of the top sequent(s). This remains true for LK, with the exception of the rules
∀-right and ∃-left. For these rules we can make a weaker statement: the universal closure of
(the meaning of) the bottom sequent is a logical consequence of the universal closure of (the
meaning of) the top sequent. The following proposition makes this weaker statement for all
the PK rules. (The statement is weaker, because for any formulas A and B, if A |= B, then
∀A |= ∀B).

Lemma For each PK rule, the universal closure of the meaning of the bottom sequent is a
logical consequence of the universal closure(s) of the meaning(s) of the top sequent(s). Here
the meaning of a sequent S is the formula AS given in (2).

Proof: The argument for the propositional rules is essentially the same as for the system
PK. The arguments for ∀-left and ∃-right are easy; and in fact in these cases it is not
necessary to take universal closures.

We illustrate the remaining two rules by considering the case of of ∀-right. Note that because
of the Restriction for this rule, the variable b cannot occur in Γ or ∆. Hence it suffices to
verify that

∀x(
∧

Γ ⊃ (
∨

∆ ∨ A(x))) |=
∧

Γ ⊃ (
∨

∆ ∨ ∀xA(x))

To see that this logical consequence holds, suppose thatM is a structure and σ is an object
assignment. Suppose that M satisfies the left hand side under σ, i.e.

M |= ∀x(
∧

Γ ⊃ (
∨

∆ ∨ A(x)))[σ]

Either M satisfies ∀xA(x) under σ or not. In the first case it follows immediately that M
satisfies the right hand side under σ. In the second case, it must be that

M |= ∀x(
∧

Γ ⊃
∨

∆)[σ]

and hence again M satisfies the right hand side under σ. �

Exercise 13 Give the argument for the other three quantifier rules.

Soundness Theorem for LK: Every sequent provable in LK is valid.

Proof: This is proved by induction on the number of sequents in the LK proof. For the
base case, obviously each axiom A→ A is valid. For the induction step, it follows from the

29

above lemma that for each rule, if all sequents on top are valid, then the sequent on the
bottom is valid. �

Exercise 14 Give a specific example of a sequent Γ→ ∆, A(b) which is valid, but the bottom
sequent Γ → ∆,∀xA(x) is not valid, because the restriction for the ∀ right rule is violated
(i.e. b occurs in Γ or ∆ or ∀xA(x)). Do the same for the ∃ left rule.

An LK proof of a valid first-order sequent can be obtained using the same method as in
the propositional case: Write the goal sequent at at the bottom, and move up by using the
introduction rules in reverse. A good heuristic is: if there is a choice about which quantifier
to remove next, choose ∀ right and ∃ left first (working backwards), since these rules carry
a restriction.

Here is an LK proof of the sequent (∀xPx ∨ ∀xQx)→ ∀x(Px ∨Qx).

Pb→ Pb
(weakening)

Pb→ Pb,Qb
(∨ right)

Pb→ (Pb ∨Qb)
(∀ left)

∀xPx→ (Pb ∨Qb)

Qb→ Qb
(weakening)

Qb→ Pb,Qb
(∨ right)

Qb→ (Pb ∨Qb)
(∀ left)

∀xQx→ (Pb ∨Qb)
(∨ left)

(∀xPx ∨ ∀xQx)→ (Pb ∨Qb)
(∀ right)

(∀xPx ∨ ∀xQx)→ ∀x(Px ∨Qx)

Exercise 15 Give LK proofs for the following valid sequents:

∀xPx ∧ ∀xQx→ ∀x(Px ∧Qx)
∀x(Px ∧Qx)→ ∀xPx ∧ ∀xQx
∃x(Px ∨Qx)→ ∃xPx ∨ ∃xQx
∃xPx ∨ ∃xQx→ ∃x(Px ∨Qx)
∃x(Px ∧Qx)→ ∃xPx ∧ ∃xQx
∃y∀xPxy → ∀x∃yPxy
∀xPx→ ∃xPx

Check that the rule restrictions seem to prevent generating LK proofs for the following invalid
sequents:

∃xPx ∧ ∃xQx→ ∃x(Px ∧Qx)
∀x∃yPxy → ∃y∀xPxy

30

