CS Theory (Spring "25)
Test 2 Review Solutions

Instructor: Toniann Pitassi and William Pires

1 Concepts to review

Be comfortable answering the following:
(a) What is P 7

(b) What is NP ?

(c) What is a decidable language ?
(

)
)
d) What is a recognizable language ?
(e) What’s the language of a TM ?

)

(f) What’s the language of a NTM ?

2 True or False

(a) Every NP-hard language is NP-complete. False
(b) Every decidable language is in NP. False

(c) Every language in P is in NP. True

e) There exists an infinite language that is in P. True

(
(f

)
)
)
(d) There exists a finite language that is undecidable. False
)
) There is an algorithm for 3S AT that runs in exponential-time. True
)

(g) The following problem is decidable: on input < M >, accept if and only if M halts in
polynomial-time on all inputs. False

(h) A polynomial-time mapping reduction from 3SAT to L = {0"1" | n > 0} implies P = NP.
True

(i) Let HALT be the set of inputs < M, w > such that M does not halt on w. HALT is infinite.
True

(j) HALT is recognizable. False

(k) Let A be polynomial-time mapping reducible to B. Then it is possible that A is in P but B is
not in NP. True



(1) The set of languages over ¥ = {0,1} is countable. False

(m) The set of all strings (M) where M is a TM, is countable. True

3 Recognizable languages

Prove the following languages are recognizable. In each problem you can assume the Turing ma-
chines take as inputs strings over ¥ = {0, 1}.

(a) L={(M)| M accepts at least one string w such that w has odd length and ends with a 1 }

Let wy,ws, ... be the lexicographic enumeration of all strings over ¥ = {0,1}.

Algorithm 1 Recognizer for L
Input: (M) where M is a TM

1: for:=1,2,3,... do
2 for 0<j<ido
3 Run M on w; for 7 steps.
4 if M accepted and w; has odd length and w; ends with a 1 then
5z Accept (M)
6 end if
7 end for
8: end for

For correctness, assume first that there is a string of odd length and ending with a 1 that
M accepts. Let w be the first such string, and suppose that w is the ¢** string in our
enumeration. And suppose that M accepts w in ¢ steps. Let ¢’ be the max of ¢t and /. Then
our simulation will accept w when ¢ = ' and j = ¢, and therefore our algorithm accepts
all strings in the language. Conversely if M does not accept any string w ending with 1
and of odd length, then our simulation will never halt and accept since our algorithm only
halts and accepts when M halts and accepts on a string of this form.



(b) L ={< M >| M accepts some string ending with 11 or 01}.

Algorithm 2 Recognizer for L
Input: (M) where M is a TM

1: for:=0,1,2,3,... do
2 Run M on all strings w over {0, 1} with |w| < i for i steps.
3 Look at the strings M accepted in the above step.
4: if M accepted some string w and w ends with 11 or 01. then
5
6
7

Accept (M)
end if
: end for

For correctness, assume first that there is a string ending with 11 or 01 that M accepts.
Let w be the lexicographically first such string, and suppose that |w| = ¢. And suppose
that M accepts w in t steps. Let ¢’ be the max of ¢ and £. Then our simulation will accept
w in the step where i = t/, and therefore our algorithm accepts all strings in the language.
Conversely if M does not accept any string w ending with 11 or 01, then our simulation
will never halt and accept since our algorithm only halts and accepts when M halts and
accepts on a string of this form.



(¢c) L = {(Mj, M) | such that there exists a string w accepted by M; and rejected by My}

Let wy,ws,. .. be the lexicographic enumeration of all strings over 3 = {0,1}.

Algorithm 3 Recognizer for L
Input: (M, M) where My, My are TMs
1: for:=1,2,3,... do
2 for 0<j<ido
3 Run M; on w;j for i steps.
4 Run M> on w; for 7 steps.
5: if M accepted and w; and M rejected w; then
6
7
8
9

Accept (M1, Ma)
end if
end for
: end for

For correctness, suppose M7, accepts some string that Ms rejects, and let w be the lexico-
graphically smallest string that M; accepts and My rejects. Assume that w is the ¢ string
in lexicographic order, and assume that M; accepts w in ¢; steps and Ms rejects w in ¢y
steps. Then when we run the loop for i = max(¢,t;,t2), when j = ¢ will simulate both M;
and My on w and M; will accept, and M» will reject w and therefore we will accept. On
the other hand, if the strings accepted by M; and the strings rejected by M, are disjoint
sets, then we will never accept since the only way our simulation accepts is if it finds some
string w that was accepted by M; and rejected by M.



4 Decidable languages

For each of the following languages, state whether or not it is decidable and prove your answer.
To prove a language is undecidable using a Turing reduction. Use Arjs or Halt or Empty for your
reduction. To prove decidable give pseudocode to describe a decider. In each problem you can
assume the Turing machines take as inputs strings over ¥ = {0, 1}.

(a) L={(M)| M accepts 00}.

We show a Turing reduction Arps <; L, in class we’ve shown that A7ps is undecidable so
this proves L is not decidable. Let N be a decider for L. We can construct a decider for
Arps as follows:

Algorithm 4 A decider D for Arjs
Input: (M, w) where M is a TM and w is a string

1: Consider the TM M’ defined as follows:
“On input x:

1. If = # 00: reject.

2. Run M on w

3. If M accepted w, accept x.
4. If M rejected w, reject.”

2: R,lln N on <M/> > N always halts because it decides L
3: If N accepted, accept (M, w).
4: If N rejected, reject (M, w).

We now show D is a decider for Arys. The only string x that M’ can accept is 00. If M
accepts w then M’ accepts 00, and otherwise M’ doesn’t accept 00.

(1) If (M, w) € Arpr, then M accepts w, so M’ accepts 00 and (M’) € L. So N accepts
(M') on line 2, and D accepts (M, w) on line 3.

2) If (M, w) & Arpr, then M doesn’t accept w, and M’ doesn’t accept 00 so (M') & L.
So N rejects (M') on line 2, and D rejects (M, w) on line 4.

So D always halts and accepts (M, w) iff (M,w) € Arpy. So D decides Arjps, meaning
Ay <¢ L.



(b) L ={(M)| M accepts at least 3 strings }

We show a Turing reduction Arps <; L, in class we’ve shown that Azjs is undecidable so
this proves L is not decidable. Let IV be a decider for L. We can construct a decider for
Appr as follows:

Algorithm 5 A decider D for Apy,
Input: (M, w) where M is a TM and w is a string

1: Consider the TM M’ defined as follows:

“On input x:
1. Run M on w
2. If M accepted w, accept x.
3. If M rejected w, reject.”

2: Run N on <M/> [> N always halts because it decides L
3: If N accepted, accept (M, w).
4: If N rejected, reject (M, w).

We now show D is a decider for Apys. First note that of if M accepts w then L(M') = ¥*
so M" accepts more than 3 strings, and otherwise L(M’) = ), so M’ accepts strictly less
than 3 strings.

(1) If (M, w) € Appr, then M accepts w, so M’ accepts more than 3 strings and (M’) € L.
So N accepts (M’) on line 2, and D accepts (M, w) on line 3.

(2) If (M, w) & Arpr, then M doesn’t accept w, and M’ accepts 0 strings so (M') € L. So
N rejects (M') on line 2, and D rejects (M, w) on line 4.

So D always halts and accepts (M, w) iff (M,w) € App;. So D decides Apps, meaning
Arn <t L.



(¢) L ={< My, M5 >| there exists some string w such that M; accepts w and M> rejects w. }

Recall that Epy = {(M) | L(M) = 0} is undecidable. We show a Turing reduction
Ery <t L, in class we’ve shown that E7js is undecidable so this proves L is not decidable.
Let N be a decider for L. We can construct a decider for E7js as follows:

Algorithm 6 A decider D for Epys
Input: (M) where M is a TM

1: Consider the TM Mj which rejects every string.

2: Run N on (M, M@). B 1 elveys kellis beenss & desides L
3: If N accepted, reject (M).

4: If N rejected, accept (M).

We now show D is a decider for Epys. First note that Mj rejects every string. So if M
accepts some string w then (M, My) € L. If M doesn’t accept any string, then (M, My) & L

(1) If (M) € Erpr, then M doesn’t accept any string. So (M, My) ¢ L . So N rejects
(M, My) on line 2, and D accepts (M) on line 4.
(2) If (M) € Erpr, then M accepts some string w. So (M, My) € L. So N accepts (M, My)

on line 2, and D rejects (M, w) on line 3.

So D always halts and accepts (M) iff (M) € Eppr. So D decides Eryy, meaning Epay <; L.

Good practice: Try to show Apys <p L7



5 NP Completeness

Prove the following languages are NP-complete. For proving the language is in NP, you can either
give a verifier or an NTM. For proving the language is NP-hard, you must use one of the following
NP-complete languages in your reduction: 3SAT, Graph-Color, Clique, Independent-Set, Hitting-
Set, Subset-Sum. (Graph-Color is a generalization of 3Color: The input is (G, k) where G is an
undirected graph. The input is accepted iff there is a proper k-coloring of G.)



(a) You are given a k tables and a list of n guests. For each guest you must place at one of the
tables (some tables can be left empty).

You're also given a list C' = {c1, ..., c¢} of constraints of the form (g;, g;) which says that guests
1 and j cannot sit at the same table.

Floor-Plan = {(k,n,C) | we can place the n guests using k tables and respect the constraints in C.}

We first give a verifier to show the problem is in NP.

Algorithm 7 A polytime verifier for Floor-Plan

Input: (k,n,C),cert), where C is a list of constraints

1: Check cert = (t1,...,t,) where each t; is an integer between 1 and & (in binary).

2: We interpret ¢; has meaning guest ¢ is assigned to table ¢;.

3: for each constraint (g;,g;) in C' do

4: If¢; = t; reject. D> This means guest  and j are assigned to the same table
5: end for

6: Accept. D> This means that all constraints are respected

Tip: In your verifiers, it should be clear what the certificate format is and what
it means. For instance don’t write ” Check cert is a floor plan”.

Similarly, if you give an NTM you should write something like “Non-deterministically assign
a table 1 < t; < k to each guest i.”. Do not write “Non-deterministically pick a floor-plan”.

We now show Floor-Plan is NP-hard. We show Graph-Color <p Floor-Plan.

We're given (G, k) where G is an undirected graph with vertices {v1,...,v,} and k an
integer.

We output f((G,k)) = (k,n,Cq) where Cq = {(i,7) | (vi,v;) is an edge in G}.

Here are some details so that you can see why this is correct.

First, it’s easy to see f can be computed in polynomial time, you only need to write down
n,k and C which is (almost) the same thing as the list of edges in G.

In the reduction, an edge (v;,v;) of G becomes a conflict (i,7) in C. So (v;,v;) can have
the same color iff guests ¢ and j can be at the same table.

So assume there is a k-coloring of G. Then pick such a coloring «, we can build a floor-plan
as follows: if v; is colored with color ¢, we assign guest i to table £. Since adjacent vertices
in G have different colors in «, no conflicting guests are at the same table.

Similarly if (n, k,Cg) € Floor-Plan. Pick a valid assignment « of guests to table. We can
build a k coloring of G as follows: if guest ¢ is at table ¢ we color v; with ¢ in G. Since
conflicting guests (7, j) are at different tables, in the coloring adjacent vertices (v;, v;) must
have a different color.



(b) You are given a set S of n items each with a value v; and a weight w;. You're also given a
target t and a weight limit W. (all numbers are positive integers given in binary). Does there
exists T'C S such that >, .pv; =t and Y, cpw; < W 7

Knapsack = {(S,t, W) | 3T C S such that Y v;=tand » w; < W}
€T €T

We first give an NTM to show the problem is in NP.

Algorithm 8 A polytime NTM for Knapsack
Input: (S,t,w)

1: Non deterministically pick T' C S.
2 If Y, cpvi #t: Reject.

3: If 3, cpw; > W: Reject.

4: Accept.

We now show KnapSack is NP-hard. We show Subset-Sum <p Knapsack.
We're given (S,t) where S = {z1,...,z,} is a set of integers and ¢ a positive integer. We
output f((S,t)) = (S, t,n) where S := {(z1,1),..., (zn, 1)}

Here are some details so that you can see why this is correct.

First, it’s easy to see f can be computed in polynomial time, you only need to write down
S’ t,n. We can build S” in O(]S|) time given S.

In the reduction, we assign every item in S a weight of 1. We then ask if we can pick
items such that their values sums to ¢ and the total weight is < n = |S|. In particular, no
matter how we pick items, the total weight is always < n.

So assume (S,t) € Subset-Sum. Then there exists 7" C S such that ), .s; = t. For
(S',t,n) the same subset T' works in showing (S’,t,n) € KnapSack. We have > ., v; =

t ZiET w; <.

If (S',t,n) € Knapsack, then exists 7 C S such that > ,.ps; = t. So in S we have
Y icr Si = t. So (S,t) € Subset-Sum.

10



(c) Double-Clique = {(G,k) | G is a graph that contains two disjoint cliques of size k} (the two
cliques are not allowed to have any vertices in common).

We first give a verifier to show the problem is in NP.

Algorithm 9 A polytime verifier for Double-Clique
Input: (G,k,c)
Check ¢ = (S, S") where S, S” are sets of k of vertices from G.
If SNS" # (: Reject.
for each pair of vertices u,v in .S do
If (u,v) isn’t an edge in G: reject.
end for
for each pair of vertices u,v in S’ do
If (u,v) isn’t an edge in G: reject.
end for
Accept.

We now show Double-Clique is NP-hard. We show Clique <p Double-Clique.
We're given (G, k) where G is an undirected graph and k a positive integer.

We output f((G,k)) = (G', k) where G’ is a new graph which is made of two copies of G
called Gy and Gs. Le. for every vertex v of G we now have two copies vy, ve. If (u,v) is an
edge of G we now have edges (uj,v1) and (ug, v2).

Here are some details so that you can see why this is correct.

First, it’s easy to see f can be computed in polynomial time, we just make two copies of
G, so this takes O(|G]) time.

First if G has a clique S of size k, then G’ has at least two cliques of size: the copy of S in
G and the copy in Ga. So if (G, k) € Clique then (G’, k) € Double-Clique.

Now if (G’, k) € Double-Clique then G’ has a clique S of size k ® Then S is either a subset
of the vertices of G or of Gy (there’s no edges between the two copies of G we made). But
if S is a subset of vertices in Gy, since G; is a copy of G: the vertices in S must form a
clique in G. The same is true if S is a subset of vertices in Gy. So if (G’, k) € Double-Clique
then (G', k) € Clique.

“G’ must have at least two, but we only need to care about one

11



(d) VertexCover = {(G, k) | 3 a subset S of k vertices such that every edge has at least one endpoint in S}.
(Le. for every edge (u,v) in the graph u or v (or both) is in S)

We first give an NTM to show the problem is in NP.

Algorithm 10 A polytime NTM for VertexCover
Input: (G,k,c)

1: Non-deterministically pick a subset S of k vertices of G.
2: for each vertex (u,v) of G do

3: IfugsSand v¢S: Reject.

4: end for

5: Accept.

We now show VertexCover is NP-hard. We show IndependentSet <p VertexCover.

We're given (G, k) where G is an undirected graph with n vertices and k a positive inte-
ger.We output f((G,k)) = (G,n — k).

Here are some details so that you can see why this is correct.
First, it’s easy to see f can be computed in polynomial time.

For the correctness. First, let V' be the set of vertices of G.

Suppose that G has an independent set S of size k. Then, for every edge (u,v) of G at
most one of u or v is in S. So for every edge (u,v) at least of the endpoints is in V'\ S. So
V'\ S is a vertex cover of size n — k.

Conversely, suppose that G has an independent set S’ of size n — k. Then for every edge
(u,v) at least one of w or v is in S’. So for every edge (u,v) at most of the endpoints is in
V\ S So V\ S is an independent set of size k.

Hence we can see that (G, k) € IndependentSet <= f((G,k)) = (G,n—k) € VertexCover.

12



(e) 3SAT-under-p = {(¢, ) | ¢ is a 3-CNF formula and it has a satisfying assignment o which sets z; = 1}.
Here ¢ has n variables 1, ..., x, and you can assume (¢, j) always has 1 < j < n.

We first give an NTM to show the problem is in NP.

Algorithm 11 A polytime NTM for 3SAT-under-p
Input: (¢, j)

1: Non deterministically pick an assignment « € {0, 1}" to the variables of ¢.
2: If a doesn’t set z; = 1: reject.

3: Check « satisfies ¢: If not reject.

4: Accept.

We now show 3SAT-under- p is NP-hard. We show 3-Sat <p 3SAT-under- p.
We're given (¢) where ¢ is a 3-CNF formula with variables z1, ..., z,. We output f({¢)) =
(¢ N\ Tpy1,n + 1) where x, 41 is a new variable.

Here are some details so that you can see why this is correct.

First, it’s easy to see f can be computed in polynomial time, you only need to write down
¢ A Tpy1 and n+ 1. So this is O(|¢]) time.

Assume (¢) € 3-SAT. Then there exists some assignment o € {0, 1}" which satisfies ¢.
Then clearly, ¢ A x,11 is satisfied by o/ := a0 1. So ¢ A x,+1 has a satisfying assignment
which sets z,+1 = 1. So f((¢)) € 3SAT-under- p

If (¢ A xpy1,n + 1) € 3SAT-under- p. Then there’s some assignment o/ which satisfies

the formula ¢ A z,11 and sets x,11 = 1. So o/ must satisfy ¢. So we can restrict o’ to
x1,...,%Tn to get an assignment which satisfies ¢. So (¢) € 3-SAT.

13



(f) FIND2 — 3SAT = {(¢) | ¢ is a 3-CNF formula and it has at least 2 satisfying assignments}
Solution: See HW5 exercise 2 (it’s the same problem, but called DOUBLE-SAT).!

(g) William needs to solve the following ExamDesign problem. He has a list of problems, and he
knows for each problem which students will really enjoy that problem. He needs to choose a
subset of problems for the exam such that for each student in the class, the exam includes at
least one question that student will really enjoy. On the other hand, he does not want to spend
the entire summer grading an exam with dozens of questions, so the exam must also contain
as few questions as possible. Prove that the ExamDesign problem is NP-hard.

Solution: ask William.

!Technically, DOUBLE-SAT is about any CNF formula, while here the problem is about 3-CNF formulas. However,
the verifier we gave in HW5 still works. You can check the mapping reduction works too.
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