
Lectured .

ltwz out ! (Due Monday Oct 16th)

Today : Finish pushdown automata (PDAs)
context Free grammars

"
a ,b → c

"

means when reading input symbol a ,
if b is symbol

PDAExamp#1 on top of stack, replace b by C

"
a ,b → e

"

means if reading input symbol a, can pop b off stack

"
a ,E → c

"

means if reading symbol a, push conto top of stack

^

7

Q = 990,992,9s }
→ go
$o q

,

<→ °

{ = {on }

p -
. { 0

,
$3 | 1,0 → ef- = { 90,933

% 9
,
- qz 21,0 →

E

E. $ → e

PDA accepts an input w if there exists a ssonputatim path
starting in qo and ending in an accept state

PDA (Formal Description]

A PDA is described by a
6 - tuple M = (Q

,
E

,

P
,

S
,
Eo , F)

T T F T ← acceptstates input :

alphabet stack
start
state states

alphabet
S : Qx {Evel ✗ {rue } → P(Qx{rue })

M ciccepts w if W can be written as w = W
, Wzw, - . - mm

,

where

each W
,

C- {Eve }
,

and I a sequence of states no ,r, , - . , rm c-Q

and F sequence
of strings EM satisfying :

Si contents
of stack at time i

① no = qo , so = E (start state is qo
,
stack initially empty)

a. be Pvc
② for all i. 0,1, . . ,m -1 Crit

, ,
b) c- 8 (ri , wa , ,

a) where Si =at
ye p*

Sit , =bt

(M moves according to transition functions)

③ rmef (final state is an accept state
S
,

#
0$00 §

PDA (Formal Description]

A PDA is described by a
6 - tuple M = (Q

,
E

,

P
,

S
,
Eo , F)

T T fstates input
alphabet tape acceptstart

alphabet state states

S : Qx {Evel ✗ {rue } → P(Qx{rue })

M ciccepts w if W can be written as w = W
, Wzw, - . - mm

,

where

each W
,

C- {Eve }
,

and I a sequence of states no ,r, , - . , rm c-Q

and F sequence
of strings c- M satisfying :

Si contents
of stack at time i

① no = qo , so = E (start state is qo
,
stack initially empty)

② for all i. 0,1 , . . ,m -1 Crit
, ,
b) c- 8 (ri , wa , ,

a) where Si = at a) be Rue

te p*
Sit , =bt

(M moves according to transition functions)

③ rmef (final state is an accept state)

LCM) = { we I M accepts w }
A language is a CFL if some PDA accepts it

PDA (Formal Description]

A PDA is described by a
6 - tuple M = (Q

,
E

,

P
,

S
,
Eo , F)

T T P T ← acceptstates input start
alphabet todfphabet state states

S : Qx {Evel ✗ {rue } → PCQ ✗ {rue })

Notes : We only accept if we are in an accept state

when all of W is processed.

Note that we can accept a string w even if

stack is not empty at end of processing
W

.

→ is include all regular languages

But there
are languages that are

cells that

arent even . eye:c :{on , no }

(+ { wl war}EEZ L = { WWR 1 we {0,13*3

idea
• start in % : push $ onto stack

,

+ go to state q
,

• Read symbols in push them onto stack

• at each point ,
we can nondeterministically guess we're

at middle of string (by changing to state qz)
• When in qz read next input symbol & check if it matches top symbol

on stack r it so pop top symbol off stuck

• guess end of string & if we see
"
$
"

on top A stack go to q (accept state3

EP L :{ WWR 1 we {0,13*3

9C → o

→ %
É$

q
,

File → 1

/ e. e→e

I

q
,
o9

qz ⇒ 0,0 → e

1
,
I → E.

.

scq.ge)={ (Eg ,$) } SC -9
, i. a) → { Cog ,

D }
s ={cq;# SCE

, ,Gc)→{cage) }

0
,
c → o

→ %
$

q
,

The → 1

Y:[☒

/ e. e→e

. ☒ Ea E
, Lif

q
,
o9

qz ⇒ 0,0 → e

1,1 → e £ / \
→☒ ↳ 92 e.

1 "
w = 011 110 ✗ & f

H
✓④←← ←←%É

Examples

Any Regular Language is accepted by some PDA
.

Let L be regular , and Let M = (Q
,
E
,

F
,
Eo , S) be a

DFA accepting L .

Corresponding PDA for ↳ N=(Q
,
E
,

M
,

F
,
go
,
8

'

)
where A =

s
'

: Cqa , e)
= { Code) }

becomes

siege
, a) = { Cecil }Sca

,
a) = Cq ') ⇒

(DFAYFNFAS are PDA where stack is always empty)

Ex .

NFA : Do

I
⑧a-

PDA : ⑤÷?⃝7a↳ ,

E→q

④21,e→e

Exampk4_ L = { o'
'

Ii 2*1 i < j } E = {0,1
,
2}

→

④
→¥$$→*i.

*→ o 64 ?⃝⇒→#
* →$
$ → &

HintsmmakiryPDAsl.C.FI
> are closed under union

- If µ
,

is a PDA for L,
Mz

" L
,

then can construct M PDA for 4 Utz

→•I
-€8

* 2. CFCs not closed under complement .

* An important difference between CFL 's and Regular L's :

Closed Under Deterministic = Nondet
-

Negation

| Regular Yes
Yes ""A N'=D

-

,

CFL No
No (Deterministic PDA #

ppnondetp.iq

③ Alternative characterization of CFL 's : context - free grammars

Def_n A context - free grammar (Cfg) is a
4 - tuple

g = (V
,

E
,
R

,
S)

T J # SEU is the start variable

finite set Finite Finite set of rules
of variables alphabet of the form A→w

A- c- V
,
we @ u E)

*

Equivalent characterization of PDA 's context - free grammars

Def_n A context - free grammar (Cfg) is a
4 - tuple

g = (V
,

E
,
R

,
S)

T T
ignite
S ⇐ ✓ is the start ✓arias,,

finite set Finite set of rules
of variables alphabet of the form A→w

A- c- V
,
we @ us)*

Examp-kt-g-fv.ES?E-- {0,13
,
R
,
S)

R : (can abbreviate both by)s → OSI s → { 1051

s → a

s→o:* -7005-11 → 0011ex . cant generate 01 '

-

s→osiex . generating 0011 :

Equivalent characterization of PDA 's context - free grammars

Examp-kt-g-fv.ES?E-- {0,13
,
R
,
S)

R : s → s (can abbreviate both by)s → OSI s → 51051

Deff For a Cig g--CV, E,
R

,
S)

let u
, v.we Cvu E) *

,
and suppose the rule A- → w is

in R
. then we

say that UAV ⇒ uwv (UAV yields uwv)
If 34

, . - , un c- (VuE*) such that U⇒y⇒uz⇒ .
-⇒ un⇒µ

then we say u -*→v (u generates v)
.

The Language Lcg) generated by g
is

Lcg) = { vest Is v3

Equivalent characterization of PDA 's context - free grammars

Examp-kt-g-fv.ES?E-- {0,13
,
R
,
S)

R : s → E (can abbreviate both by)s → OSI s → E / 051

I

s → 051 → 00511 → 0005111 → 000111

So 000111 c- L (g)

Lcg) = { on in In > o }

Gangster L= { w
-

I w=w" } E :{ gb }

s → asa

S →
bsa

s →

elatbs-asalbsblclalbs-asa-absba-abbs-asa-abs.ba
-7 ababa

s→ bsb Ba

ExampkZ_ g = (V -
- { S3

,
{ ={ a. b3

,

R
,
S)

R : s → el al b

s → as a lb Sb

s → e

s → a } So E
,
a,b c- Leg)

s → b

s→ as a → aasaa → aabsbaa → aabbaa
s→ asa → aasaa → aabsbaa → aababaa

fxampte2-L-fwela.br/w--wR3g--(V--Es3,E--Ea.b3
,

R
,
S)

R : s → el al b

s → as a lb Sb

s → e

s → a } So E
, a.be Lcg)

s → b

s→ as a → aasaa → aabsbaa → aabbaa
s→ asa → aasaa → aabsbaa → aababaee

Example : L :{w/ w=y1? and IWI is even }

g = (V = { S3
,
E-- { a. b3

,

R
,
S)

R : s → el ☒ I ☒
s → as a lb Sb

s → e

s → as→#
s→ as a → aasaa → aabsbaa → aabbaa

s-sasai-aasaa-aabsbfaababaa.hn
= { w/ w=wR and IWI is odd} s→ asalbsb falls

Examp4 g = (v :{ c- 3
,

E={9b,t,*
,
I
,
) }

,
R
,

E }

R : c- → C- + E I E- * E / (E) / a 1 b

Derivation for a + b. * a c- L (g) :

C- → Et E → c- * C- * C- → at C- * E → at b * E →atb *a
__ e-

g-

⇐ TA

-

n

Examp4 g = (v :{ c- 3
,

E={9b
,
t ,*

, 4) } , R ,

E 3

R : c- → C- + E I E- * E / (E) / a 1 b

D-envatinttl-for.at#a-LCg) :
- C-

/ I\

E t C-

C- → Et E → c- * C- * C- → at C- * E → at b * E → atb*a 1 IN
a E * E

I t
b a

→
Derivation
tree

Examp4 g = (v :{ c- 3
,

E={9b,t,*
, 4) } , R ,

E }

R : c- → C- + E I C- * E / (E) / a lb

C-
/ 1)

Derivation #1 for atbta • E t C-
-

"

1 IN
C- → Et E → c- * C- * c- -5 at C- * E → at C-* a → atb * a

a E * E

I t
b a

.

Derivation A- 2 for atb×a
E

C- → C- * C- → C- * a-7 Et C- ☒ a→ at C- * a → atb* a / /\
C- * c-

111
E t E ta
l l
a

.

b

D_efn . A Leftmost derivation is a derivation where at each

step ,

we replace the leftmost variable

=P Derivations A1 and ¥2 Were Not Leftmost .

The corresponding Leftmost derivations are :

C-
Derivation €1 (c- → c- t.IE#E/.E)lalb)

/n-

E t C-

E → Et E → at E → at C- * c- → at b&E → at b-a p IN
a E * E

corresponding Leftmost : 1 f
b a

C- → Et E → c- * C- * c- → at C- * E → at C-☒ a → at b * a

claim there

a derive

-

D_efn . A leftmost derivation is a derivation where at each

step ,

we replace the leftmost variable

Derivation
E

C- → C- ☒ C- → C- * a-7 Et C- ☒ a→ at E * a → atb* a / /\
C- * c-

111
fÉdñgftm_t:

I
E t E a

1 I
C- → c-☒ C- → C- + c- * C- → at C- * c- → atb -C- → atbxa

a
.

b

Claim there is a 1- (correspondence between

a derivation tree and a leftmost derivation

Ambiguous vs unambiguous grammars

Deff A Cfg g is ambiguous if there exists some

we Lcg) such that w has more than one different

derivation trees E- more than one Leftmost derivation)

×a#4 is ambiguous since we just saw that

w ⇒ atbta has 2 different derivation trees

Ambiguous vs unambiguous grammars

Deff A Cfg g is ambiguous if there exists some

we Lcg) such that w has more than one different

derivation trees E- more than one Leftmost derivation)

[×#4g: c- → Et El E- * E I (E) f a lb is ambiguous
.

since W ⇒ atbta has 2 different derivation trees

Define : g
'

: E → c- f- F / F

F → f- * gig

g → (E) Ialb

claim g
'
is umwambiguoun , and L (g) =L (g)

Ambiguous vs unambiguous grammars

Deff A Cfg g is ambiguous if there exists some

we Lcg) such that w has more than one different

derivation trees E- more than one Leftmost derivation)
r

Defn_ A context free Language L is inherently ambiguous

if every Cfg
that generates L is ambiguous .

Ambiguous vs unambiguous grammars

Deff A Cfg g is ambiguous if there exists some

we Lcg) such that w has more than one different

derivation trees E- more than one Leftmost derivation)
r

Defn_ A context free Language L is inherently ambiguous

if every Cfg
that generates L is ambiguous .

Examples L = { oibncmdm In ,m=o} u { anbmcndm In ,m=o }
is inherently ambiguous

Ambiguous vs Unambiguous grammars
r

Defy A context free Language L is inherently ambiguous

if every Cfg
that generates L is ambiguous . .

Exempts L = { oibncmdm In ,m=o} u { anbmcndm In ,m=o }
is inherently ambiguous

ckliÑ1_ L is a CFL (prove as an exercise)

claiming Cidea) : show that any w of the form

anbncndn
,
n > 2 will always nail at least 2

different derivation trees

