Lecture 9

.

PDA accepts an input w if there exists a computation path starting in qo and ending in an accept state

PDA (Eormal Description)
A PDA is described by a 6-typle
$$M = (Q, \Xi, \Gamma, \delta, 20, F)$$

states input stack start accept
alphabet stack states
 $\delta: Q \times \{\Xi \cup E\} \times \{\Gamma \cup E\} \rightarrow P(Q \times \{\Gamma \cup E\})$

A PDA (Eormal Description)
A PDA is described by a 6-typle
$$M = (Q, \Sigma, \Gamma, S, 2u, F)$$

states input type accept
states input type states
 $S: Q \times \{\Sigma u E\} \times \{\Gamma u E\} \rightarrow P(Q \times \{\Gamma u E\})$

$$\left\{ L \neq \left\{ w \left(w = \omega^{R} \right) \right\} \right\}$$

Idea

Example 2

- · Start in 20: push \$ onto stack, + 90 to stark 2,
- · Read symbols + push them onto stack
- at each point, we can nondeterministically guess which at middle of string (by changing to state 22)

 $L = \{ ww^{R} \mid w \in \{0, 1\}^{*} \}$

- When in 22 read next input symbol & check if it matches top symbol on stack + it so pop top symbol off stack
- · guess end of string + if we see "\$" on top of stack go to 23 (accept state)

Example 2 $L = \{ WW^R \mid W \in \{0, 1\}^* \}$

Let L be regular, and Let M = (Q, Z, F, 20, S) be a DFA accepting L.

corresponding PDA for L:
$$N = (Q, \Xi, \Gamma, F, Z_0, \delta')$$

where $\Gamma = \phi$
 $\delta':$ $(Q, \alpha, \varepsilon) = \xi(Q', \varepsilon) \xi$
 $\delta(\alpha, q) = (Q')$ becomes $\delta'(\alpha, \varepsilon, q') = \xi(\varepsilon, q') \xi$
 $\left(DFAs(NFAs are PDA where stack is always empty) \right)$

Z= 80,1,2] **Example 4** $L = \{ 0^{i} 1^{j} 2^{*} | i < j \}$

* An important difference between CFL's and Regular L's:

	Closed Under Negation	Deterministic = Nondet
Regular	Yes	Yes (DFA = NFA)
CFL	No	No (Deterministic PDA Nondet PDA)

Alternative Characterization of CFL's: Context-Free grammers

Equivalent Characterization of PDA's: Context-Free grammers

Defn A context-free grammar (CFg) is a 4-typle

$$g = (V, \Xi, R, S)$$

finite set Finite Finite Finite set of rules
of variables alphabet of the form $A \rightarrow W$
 $AeV, We(VUE)^*$
Example 1 $g = (V=253, \Xi = 50, 13, R, S)$

R:

$$S \rightarrow 0S1$$

 $S \rightarrow \varepsilon$
 $ex. cant generate 0(1)$
 $ex. generating 001(1)$; $S \rightarrow 005(1) \rightarrow 0011$

Equivalent Characterization of PDA's: Context-Free grammers

Example 1
$$g = (V = 2S), z = 20, 13, R, S)$$

 $R : S \rightarrow S$
 $S \rightarrow 0S1$ (can abbreviate both by)
 $S \rightarrow 0S1$ $S \rightarrow S|0S1$

Defn For a CFg
$$g=(V, \xi, R, s)$$

Let $u, v, w \in (V \cup \xi)^*$, and suppose the rule $A \rightarrow w$ is
in R. Then we say that $uAv \rightarrow uwv$ (uAv yields uwv)
If $\exists u_1, ..., u_n \in (V \cup \xi^*)$ such that $u \rightarrow u_1 \rightarrow u_2 \rightarrow ... \rightarrow u_n \rightarrow V$
then we say $u \rightarrow v$ (u generates v)
The Language $d(g)$ generated by g is
 $L(g) = \{v \in \xi^* \mid S \stackrel{*}{\rightarrow} v\}$

Equivalent Characterization of PDA's: Context-Free grammers

Example 1
$$g = (V = \xi s), \xi = \{0, 1\}, R, s)$$

 $R : S \rightarrow \varepsilon$
 $S \rightarrow 0 S 1$ (can abbreviate both by)
 $S \rightarrow \varepsilon 1 0 S 1$

 $S \rightarrow OS \rightarrow OOSII \rightarrow OOOSIII \rightarrow OOOSIII \rightarrow OOOIII$ $So oooiii e <math>\chi(q)$

 $2(g) = \{0^n | n \ge 0\}$

•

$$5 - 7 a Sa$$

$$S \rightarrow b > c$$

Example 2
$$G = (V = \{s\}, \{z = \{a, b\}, R, S\})$$

R: $S \rightarrow \epsilon | a | b$
 $S \rightarrow a S a | b S b$

$$S \rightarrow \varepsilon$$

 $S \rightarrow \alpha$
 $S \rightarrow b$
 $S \rightarrow c$
 $S \rightarrow b$
 S

$$g = (V = \{s\}, \xi = \{a, b\}, R, S)$$

R: $S \rightarrow \epsilon | a | b$
 $S \rightarrow a S a | b S b$

$$S \rightarrow \varepsilon$$

 $S \rightarrow \alpha$
 $S \rightarrow b$
 $S \rightarrow c$
 $S \rightarrow b$
 $S \rightarrow c$
 S

Example 3:
$$L = \{w \mid w = w^{R} \text{ and } |w| \text{ is even} \}$$

 $q = (V = \{s\}, \{z = \{a, b\}, R, S\})$
 $R: S \rightarrow \epsilon |A| b$
 $S \rightarrow aSa \{bSb\}$
 $S \rightarrow \epsilon$

$$\begin{array}{cccc} \mathsf{K}: & \mathsf{S} \to \varepsilon | \mathsf{X} | \mathsf{Y} \\ & \mathsf{S} \to \mathfrak{a} \mathsf{S} \mathfrak{a} | \mathsf{b} \mathsf{S} \mathsf{g} \end{array}$$

s > asa > aasaa > aabsbaa > aabbaa 8-2 asa asa a ababaa a a babaa

L= {w/ w= wk and lw/ is odd} s=asalbsb (alb

$$\frac{E \times ample 4}{R} = (V \sim \{E\} \neq E^{2}(a,b,+,*,(,))\}, R, E \}$$

$$R : E \rightarrow E + E | E \times E | (E) | a | b$$

$$\frac{Dervation for a + b \times a \in \mathcal{Z}(g)}{E} :$$

$$E \rightarrow E + E \rightarrow E + E \ll E \rightarrow a + E \times E \rightarrow a + b \times E \rightarrow a + b \times a$$

<u>^</u>

Example 4
$$g = (V = \{E\}, E = \{a, b, +, *, (,)\}, R, E\}$$

 $R : E \rightarrow E + E | E \times E | (E) | a | b$
Derivation #1 for $a + b \times a \in \mathcal{I}(g)$:
 $E \rightarrow E + E \rightarrow E + E + E \Rightarrow a + E + E \Rightarrow a + b \times E \Rightarrow a + b \times a$
 $a = \begin{bmatrix} F & E \\ F & F \\$

Example 4
$$g = (V = \{E\}, E = \{a, b, +, *, (,)\}, R, E\}$$

 $R : E \rightarrow E + E | E \times E | (E) | a | b$
Derivation #1 for $a + b \times a$:
 $E \rightarrow E + E = \rightarrow E + E + E \Rightarrow a + E \times E \Rightarrow a + E \times a \Rightarrow a + b \times a$
 $E \rightarrow E + E = \rightarrow E + E + E \Rightarrow a + E \times E \Rightarrow a + E \times a \Rightarrow a + b \times a$
 $a = E + E \Rightarrow E + E + E \Rightarrow a + E \times E \Rightarrow a + E \times a \Rightarrow a + b \times a$

. Derivation #2 for at b*a:

 $E \rightarrow E * E \rightarrow E * a \rightarrow E + E * a \rightarrow a + E * a \rightarrow a + b * a$

Defn. A leftmost derivation is a derivation where at each step, we replace the leftmost variable

The corresponding Leftmost derivations are;

Derivation #1
$$(E \rightarrow E + E | (E) | a | b)$$

 $E \rightarrow E + E \rightarrow a + E \rightarrow a + E + E \rightarrow a + b + E \rightarrow a + b + E \rightarrow a + b + a$
Corresponding Leftmost:
 $E \rightarrow E + E \rightarrow E + E + E \rightarrow a + E + E \rightarrow a + E + a + b + a$

Defn. A leftmost derivation is a derivation where at each step, we replace the leftmost variable

a derivation tree and a leftmost derivation

Defn A CFG G is ambiguous if there exists some we I(g) such that w has more than one different derivation trees (= more than one Leftmost derivation)

Example 4 is ambiguous since we just saw that W= atb*a has 2 different derivation trees

Defn A CFG G is ambiguous if there exists some we I(g) such that w has more than one different derivation trees (= more than one Leftmost derivation)

Example 4 q: E->E+E | E × E | (E) | a | b is ombiguous since W = atb*a has 2 different derivation trees

Define :
$$g'$$
 : $E \rightarrow E f f | F$
 $F \rightarrow F * g | g$
 $g \rightarrow (E) | a | b$

claim g'is unambiguous, and Z(g) = R(g')

Defn A CFG g is ambiguous if there exists some we I(g) such that w has more than one different derivation trees (= more than one Leftmost derivation)

٢

Defn A CFG G is ambiguous if there exists some we I(g) such that w has more than one different derivation trees (= more than one Leftmost derivation)