Lecture 9

HW2 out! (Due MoNday Oct $16^{\text {th }}$)

Today: Fish pushdoun automata (PAs) Context Free grammars

PDA Excemple1 " $a, b \rightarrow c$ " means when reading input symbol a, if b is symbol on top of stack, replace b by c
" $a, b \rightarrow \varepsilon$ " means if reading input symbol a, can pop b off stack
" $a, \varepsilon \rightarrow c$ " means if reading symbol a, push conto top of stack

$$
\begin{aligned}
& Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\} \\
& \Sigma=\{0,1\} \\
& \Gamma=\{0, \$\} \\
& F=\left\{q_{0}, q_{3}\right\} \\
& q_{0}
\end{aligned}
$$

PDA accepts an input w if there exists a computation path starting in q_{0} and ending in an accept state

PDA (Eormal Description)
A PDA is described by a 6 -tuple $M=\left(Q, \sum_{\uparrow}, \Gamma_{R^{\prime}} \delta_{1} \varepsilon_{U}, F_{V}\right)$

$$
\delta: Q \times\{\varepsilon \cup \varepsilon\} \times\{\Gamma \cup \varepsilon\} \rightarrow P(Q \times\{\Gamma \cup \varepsilon\})
$$

M accepts w if w can be written as $w=w_{1} w_{2} w_{3} \ldots w_{m}$, where each $w_{1} \in\left\{\Sigma \cup\{ \}\right.$, and \exists a sequence of states $r_{0}, r_{1}, \cdots, r_{m} \in Q$ and \exists sequence of strings $\underbrace{s_{0}, s_{1}, \ldots, s_{m}}_{s_{i}=\text { contents of stack of time } i} \in \Gamma^{x}$ sat is fying:

$$
s_{i}=\text { contents of stack of time } i
$$

(1) $r_{0}=q_{0}, s_{0}=\varepsilon \quad$ (start state is ε_{0}, stack initially empty)
(2) For all $i=0,1, \ldots, m-1 \quad\left(r_{i+1}, b\right) \in \delta\left(r_{i}, w_{i+1}, a\right)$ where $s_{i}=a t \quad a, b \in \Gamma_{0} \varepsilon$
(M moves according to transition function δ)
(3) $r_{m} \in F$ (final state is an accept state)

$$
S_{1}=0 \$ 00
$$

PDA (Eormal Description)
A PDA is described by a 6 -tuple $M=\left(Q, \sum_{\uparrow}, \Gamma_{1}, \delta_{1} \varepsilon_{0}, F_{0}\right.$

$$
\delta: Q \times\{\varepsilon \cup \varepsilon\} \times\{\Gamma \cup \varepsilon\} \rightarrow P(Q \times\{\Gamma \cup \varepsilon\})
$$

M accepts w if w can be written as $w=w_{1} w_{2} w_{3} \ldots w_{m}$, where each $w_{1} \in\left\{\Sigma \cup\{ \}\right.$, and \exists a sequence of states $r_{0}, r_{1}, \ldots, r_{m} \in Q$ and \exists sequence of strings $\underbrace{S_{0}, S_{1}, \ldots, S_{m}}_{S_{1}=\text { contents of stack ot time }} \in \Gamma^{x}$ sat is fying:
$S_{i}=$ contents of stack of time i
(1) $r_{0}=q_{0}, s_{0}=\varepsilon \quad$ (start state is q_{0}, stack initially empty)
(2) For all $i=0,1, \ldots, m-1 \quad\left(r_{i+1}, b\right) \in \delta\left(r_{i}, w_{i+1}, a\right)$ where $s_{i}=a t \quad a, b \in \Gamma_{v} \varepsilon$ (M moves according to transition function δ) $S_{\text {ill }}=b t \quad t \in \Gamma^{*}$
(3) $r_{m} \in F$ (final state is an accept state)

$$
\mathscr{L}(M)=\left\{w \in \Sigma^{*} \mid M \text { accepts } w\right\}
$$

A langrage is a CEL if some PDA accepts it

PDA (EDrmal Description)
$A P D A$ is described by a 6 -tuple $M=\left(Q, \sum_{1}, \Gamma_{1}, \delta_{1} \varepsilon_{0}, F_{0}\right)$

$$
\delta: Q \times\{\varepsilon \cup \varepsilon\} \times\{\Gamma \cup \varepsilon\} \rightarrow P(Q \times\{\Gamma \cup \varepsilon\})
$$

Notes: We only accept if we are in an accept state when all of w is processed.

Note that we can accept a string w even if stack is not empty at end of processing w.

The CFL's in crude all regular Lanjuages

But there are Languages that are CFL's that orent ruler. Example: $C=\left\{\left.0^{n}\right|^{n} \mid n \geq 0\right\}$

Example 2

$$
L=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}
$$

I dea

- Start in q_{0} : push \$ onto stack, a so to state q_{1}
- Read symbols a push them onto stack
- at each point, we can rondetaminusticailly guess were at middle of string (by changing to state ε_{2})
- when in z_{z} read next input symbol + check if it inatches top symbol on stack + it so pop top symbol off stack
- Guess end of string + if we see "\$" on top 9 stack go to q_{3} (accept state)

Example 2 $L=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}$

$$
\begin{array}{ll}
\delta\left(q_{0}, \varepsilon, \varepsilon\right)=\left\{\left(q_{2}, \#\right)\right\} & \delta(q, 1, \varepsilon) \rightarrow\left\{\left(q_{1}, 1\right)\right\} \\
\delta\left(q_{1}, 0, \varepsilon\right)=\left\{\left(q_{1}, 0\right)\right\} & \delta\left(q_{1}, \varepsilon \varepsilon\right) \rightarrow\left\{\left(q_{2}, \varepsilon\right)\right\}
\end{array}
$$

Example 3.
Any Regular Language is accepted by some PDA.
Let L be regular, and Let $M=\left(Q, \Sigma, F, q_{0}, \delta\right)$ be a DFA accepting L.
corresponding PDA for $L: N=\left(Q, \Sigma, \Gamma, F, q_{0}, \delta^{\prime}\right)$
where $\Gamma=\oint$
δ^{\prime} :

$$
\delta(a, q)=\left(q^{\prime}\right) \stackrel{\text { becomes }}{\Longrightarrow} \delta^{\prime}(a, \varepsilon, q)=\left\{\left(\varepsilon, q^{\prime}\right)\right\}
$$

(DFAS/NFAS are PDA where stack is always empty)

NFA;
$E x$.

PDA:

Example $4 \quad L=\left\{0^{i} 1^{j} 2^{*} \mid i<j\right\} \quad \Sigma=\{0,1,2\}$

Hints on malcing PDAS

1. CEL's are closed unden unión If $\begin{gathered}\mu_{1} \text { is a PDA for } L_{1} \\ M_{2}\end{gathered}$
then can constrect M PDA for $L_{L} \cup L_{2}$

2 CFLs NOT closed under comptement.

An important difference between CFL's and Regular L's:
$\left.\begin{array}{|c|c|c|}\hline & \begin{array}{c}\text { Closed Under } \\ \text { Negation }\end{array} & \text { Deterministic = Nondet } \\ \text { Regular } & \text { Yes } & \text { Yes (DFA } £ \text { UFA) } \\ \text { CF } & \text { No } & \text { NO (Deterministic PDA } \\ \text { Nondet PDA }\end{array}\right)$
(2) Alternative characterization of CFL's: Context-Eree grammers

Defn A context-free grammar (CFg) is a 4 -tuple

Equivalent characterization of PDA's: Context-Free grammers

Defn A context-free grammar (CFC) is a 4 -tuple $G=\left(V, R_{0}, S\right)$
$\begin{aligned} & \text { finite set } \\ & \text { of variables }\end{aligned}$
$\begin{aligned} & \text { Finite } \\ & \text { alphabet }\end{aligned}$
$\begin{aligned} & \text { Finite set of rules } \\ & \text { of the form } A \rightarrow W \\ & A \in V, w \in(V \cup \varepsilon)^{*}\end{aligned}$

Example $1 \quad g=(V=\{s\}, \varepsilon=\{0,1\}, R, s)$
R :

$$
s \rightarrow O S_{1}
$$

$\binom{$ can abbreviate both by }{$S \rightarrow \dot{\xi}$ os 1}

$$
S \rightarrow \varepsilon
$$

ex. cant generate $O 11$

Equivalent characterization of PDA's: Context-Eree grammers
Example $1 \quad g=(V=\{s\}, \varepsilon=\{0,1\}, R, s)$

$$
R: \begin{array}{ll}
S \rightarrow S \\
S \rightarrow O S_{1}
\end{array} \quad\binom{\text { can abbreviate both by }}{S \rightarrow S \mid 0 S_{1}}
$$

Deft For a $C F g \quad g=(v, \varepsilon, R, s)$
Let $u, v, w \in(v \cup \Sigma)^{*}$, and suppose the rule $A \rightarrow w$ is in R. Then we say that $u A v \Rightarrow u w v$ (uAv yields uwv)
If $\exists u_{1}, \ldots, u_{n} \in\left(v \cup \varepsilon^{*}\right)$ such that $u \Rightarrow u_{1} \Rightarrow u_{2} \Rightarrow \ldots u_{n} \Rightarrow V$ then we say $u \stackrel{*}{\Rightarrow} v(u$ generates $v)$
The Language $\mathscr{L}(g)$ generated by g is

$$
L(g)=\left\{v \in \Sigma^{*} \mid s \nRightarrow v\right\}
$$

Equivalent Characterization of PDA's: Context-Eree grammers
Example $1 \quad g=(V=\{s\}, \varepsilon=\{0,1\}, R, s)$
$R: \begin{aligned} & S \rightarrow \varepsilon \\ & S \rightarrow O S 1\end{aligned} \quad\binom{$ can abbreviate both by }{$S \rightarrow \varepsilon \mid 0 S_{1}}$

$$
S \rightarrow 0 S 1 \rightarrow 00 S 11 \rightarrow 000 S 111 \rightarrow 000111
$$

So $000111 \in \mathcal{L}(\mathrm{~g})$

$$
f(g)=\left\{0^{n}, n \mid n \geq 0\right\}
$$

Exanple 3 $L=\left\{w \mid w=w^{R}\right\} \quad \Sigma=\{g b\}$

$$
\begin{aligned}
& S \rightarrow a S a \\
& S \rightarrow b S a \\
& S \rightarrow \varepsilon|a| b \quad S \rightarrow a S a|b S b| \varepsilon|a| b
\end{aligned}
$$

$S \rightarrow a S a \rightarrow a b S b a \longrightarrow a b b a$ $S \rightarrow a S a \rightarrow a b S b a \rightarrow a b a b a$

$$
s \rightarrow b s b
$$

Example $2 \quad g=(V=\{s\}, \quad \Sigma=\{a, b\}, R, s)$
$R: S \rightarrow \varepsilon|a| b$

$$
S \rightarrow a S a \mid b S b
$$

$\left.\begin{array}{l}S \rightarrow \varepsilon \\ S \rightarrow a \\ S \rightarrow b\end{array}\right\}$ So $\varepsilon, a, b \in \mathcal{R}(S)$
$S \rightarrow a S a \rightarrow$ aasaa $\rightarrow a a b S b a a \rightarrow a a b b a a$
$S \rightarrow$ asa \rightarrow aasaa \rightarrow aabsbaa \rightarrow aababaa

Example 2 $L=\left\{w \in\{a, b\}^{*} \mid w=w^{R}\right\}$

$$
g=(v=\{s\}, \quad \Sigma=\{a, b\}, R, s)
$$

$$
R: \quad S \rightarrow \varepsilon|a| b
$$

$$
S \rightarrow a S a \mid b S b
$$

$\left.\begin{array}{l}S \rightarrow \varepsilon \\ S \rightarrow a \\ S \rightarrow b\end{array}\right\}$ So $\varepsilon, a, b \in \mathcal{R}(g)$
$S \rightarrow a S a \rightarrow a a S a a \rightarrow a a b S b a a \rightarrow a a b b a a$
$S \rightarrow a S a \rightarrow a a S a a \rightarrow a a b S b a a \rightarrow a a b a b a a$

Example 3: $L=\left\{w \mid w=w^{R}\right.$, and $|w|$ is even $\}$

$$
\begin{aligned}
& g=(V=\{s\}, \varepsilon=\{a, b\}, R, S) \\
& R: S \rightarrow \varepsilon \mid \text { S } 1 / b d \\
& S \rightarrow a s a \mid b s b \\
& S \rightarrow \varepsilon \\
& S \rightarrow a \\
& S \rightarrow b
\end{aligned}
$$

$S \rightarrow a S a \rightarrow$ asa $\rightarrow a a b S b a a \rightarrow a a b b a a$

$$
L=\left\{w \mid w=w^{R} \text { and }|w| \text { is odd }\right\} \quad s \rightarrow a s a|b s b| a \mid b
$$

Example $4 \quad g=(V=\{E\}, \quad \Sigma=\{a, b,+, *,()\}, R, E$,

$$
R: \quad E \rightarrow E+E|E \times E|(E)|a| b
$$

Derivation for $a+b * a \in \mathcal{L}(g)$:

$$
\underline{E} \rightarrow E+E \rightarrow E+E * E \rightarrow a+E * E \rightarrow a+b * E \rightarrow a+b * a
$$

Example $4 \quad g=(V=\{E\}, \quad \Sigma=\{a, b,+, *, c)\}, R, E$,

$$
R: E \rightarrow E+E|E \times E|(E)|a| b
$$

Derivation \#1 for $a+b * a \in \mathscr{L}(g):$

$$
E \rightarrow E+E \rightarrow E+E * E \rightarrow a+E * E \rightarrow a+b * E \rightarrow a+b * a
$$

Derivation tree

Example $4 \quad g=(V=\{E\}, \quad \varepsilon=\{a, b,+, *, l)\}, R, E$,

$$
R: \quad E \rightarrow E+E|E * E|(E)|a| b
$$

Dervation \#1 for $a+b \not a c$:

$$
E \rightarrow E+E \rightarrow E+E * E \rightarrow a+E * E \rightarrow a+E * a \rightarrow a+b * a
$$

Dervation $\# 2$ for $a+b * a$:

$$
E \rightarrow E * E \rightarrow E * a \rightarrow E+E * a \rightarrow a+E * a \rightarrow a+b * a
$$

Defn. A leftmost derivation is a derivation where at each step, we replace the leftmost variable
\Rightarrow Derivations \#1 and \#2 were Not Leftmost.
The corresponding Leftmost derivations are:

Derivation $\# 1 \quad(E \rightarrow E+E|E * E|(E)|a| b)$

$$
E \rightarrow E+E \rightarrow a+E \rightarrow a+E * E \rightarrow a+b * E \rightarrow a+b * a
$$

corresponding Leftmost:

$$
E \rightarrow E+E \rightarrow E+E * E \rightarrow a+E_{*} \in \in \rightarrow a+E * a \rightarrow a+b * a
$$

Defn. A leftmost derivation is a derivation where at each step, we replace the leftmost variable

Derivation \#2

$$
E \rightarrow E * E \rightarrow E * a \rightarrow E+E * a \rightarrow a+E * a \rightarrow a+b * a
$$

Corresponding Left most:

$$
E \rightarrow E * E \rightarrow E+E * E \rightarrow a+E * E \rightarrow a+b * E \rightarrow a+b * a
$$

Claim there is a $1-($ correspondence between a derivation tree and a leftmost derivation

Ambiguous vs Un Ambiguous grammars

Defn A CFG g is ambiguous if there exists some $w \in \mathcal{L}(g)$ such that w has more than one different derivation trees (more than one Leftmost derivation)

Example 4 is ambiguous since we just saw that $W=a+b * a$ has 2 different derivation trees

Ambiguous vs Un Ambiguous grammars

Defn A CFG g is ambiguous if there exists some $w \in \mathcal{L}(g)$ such that w has more than one different derivation trees (\equiv more than one Leftmost derivation)

Example 4 g: $E \rightarrow E+E|E \times E|(E)|a| b$ is ambiguous since $W=a+b * a$ has 2 different derivation trees

Define: $g^{\prime}: E \rightarrow E+F / F$

$$
F \rightarrow F * g \mid g
$$

$$
g \rightarrow(E)|a| b
$$

claim g^{\prime} is unambiguous, and $f(g)=f\left(g^{\prime}\right)$

Ambiguous vs Un Ambiguous grammars

Defy A CFG g is ambiguous if there exists some $w \in \mathcal{L}(g)$ such that w has more than one different derivation trees (more than one Leftmost derivation)

Defn A context free Longuage L is inherently ambiguous if every CHg that generates L is ambiguous.

Ambiguous vs Un Ambiguous grammars

Defy A CFG g is ambiguous if there exists some $w \in \mathcal{L}(g)$ such that w has more than one different derivation trees (\equiv more than one Leftmost derivation)

Defn A context free Longuage L is inherently ambiguous If every CHg that generates L is ambiguous.

Example $L=\left\{a^{n} b^{n} c^{m} d^{m} \mid n, m \geq 0\right\} \cup\left\{a^{n} b^{m} c^{n} d^{m} \mid n, m \geq 0\right\}$ is inherently ambiguous

Ambiguous vs Un Ambiguous grammars
Defn A context free Longuage L is inherently ambiguous if every CHg that generates L is ambiguous.

Example $L=\left\{a^{n} b^{n} c^{m} d^{m} \mid n, m \geq 0\right\} \cup\left\{a^{n} b^{m} c^{n} d^{m} \mid n, m \geq 0\right\}$ is inherently ambiguous

Claim 1 is a CFL (Prove as an exercise)

Claim Z Cidea): show that any w of the form $a^{n} b^{n} c^{n} d^{n}, n \geq 2$ will always have at least 2 different derivation trees

