Lecture 8

- HWS due tomorrow on gradescape
- Today: Intro to Context Free Languages and Pushdoun Actor ate

Nondeterministic Finite Auk.
given some DFA M, want to construct new NFA M^{\prime}
say ne want to accept ω if eithe (1) or (2) holds:
(1): string w has kith exactly 2
(2): w ends in ore q the $1^{5} 3$ states q_{1}, q_{2}, q_{3}

$$
\sum_{q_{1}}^{2 u} \frac{2 b}{q_{2}} \frac{2 c}{q_{3}}
$$

Onginà

$$
M: \cos \in \Sigma^{8} \quad Q=909, \ldots \ldots q_{10}
$$

M': accept if: cither $|W|=2$
or w ends in one o the states $q_{1} \varepsilon_{2} \varepsilon_{3}$

Idea behind WFA is to guess one O these good possibliter a check.

$L_{4}=\{\omega,|\omega|=2\}$

$$
\begin{aligned}
L_{1} & =\left\{w \mid M(w) \text { ends in state } q_{1}\right. \\
L_{2} & =\{w 1 \\
L_{3} & =\{w \mid
\end{aligned}
$$

Now spose ve went to uccept w iff (i) + 2') both hold, where

$\mathbb{K}_{2}=\left\{\omega \mid \mu(w)\right.$ ends in stakl $\left.\varphi_{1}\right\}$
want to consoruct M accepts $\stackrel{M_{1}}{L_{1}} \cap L_{2}^{M_{2}}$

How to constrect M from $\sum_{L_{1}}^{M_{1}}+\underbrace{M_{2}}_{L_{2}}$?
(1) Rewñte "intessection" in teims of $\underbrace{+}_{\text {union }}$ and wegation

$$
D=\underbrace{L_{1} \cap \underbrace{L_{2}}_{M_{2}}}_{M_{1}}=\overline{L_{1}}+\bar{L}_{2}
$$

(2) "Cross Product" construction. $\left[\begin{array}{l}M_{1}: Q_{1}=q_{0} \cdots q_{10} \\ M_{2}: Q=Q_{0}\end{array}\right.$ New M :

$$
\begin{aligned}
& C=\left\{\left(q_{i} r_{j}\right) \mid q_{i} \in Q_{1}, r_{j} \in Q_{2}\right\} \\
& \delta \cdot\left(q_{i}, r_{j}\right), 0 \longrightarrow\left(q_{i}^{\prime} r_{j}^{\prime}\right)
\end{aligned}
$$

$$
\left.\begin{array}{c}
\text { accept states: } \left.\varphi_{j} \phi_{j}\right)\left(\begin{array}{c}
q_{i} \in \operatorname{accept} \text { state } 0 M_{1} \\
r_{j} \in \cdots
\end{array} \quad M_{2}\right.
\end{array}\right\}
$$

Context -Free Languages a PushDain Automatic
Recall what we did for the class of Regular Languages:
(1) For regular languages we first defined the regular languages to be the languages recognized by some (DFA(ミNFA)
(2) We gave an alternative characterization of regular languages: Language/generation model: Regular Expressions
(2a) we proved that these 2 characterizations are equivalent

$$
\underbrace{\text { DFA/NFA }}_{\text {Machine Model }} \equiv \underbrace{\text { Regular Expressions }}_{\text {Language/generation Model }}
$$

(3) Pumping Lemma (for Reg. L's): Used to prove that some languages are not regular.

Context - Free Languages a PushDamn AUtomatic
Now we will define a larger class of languages that includes all regular languages plus new ones.
(1) We will first define CFL's to be those Languages accepted by PUSHDOWN AVTOMATA (PDA)
(2) Then we give an alternative characterization of CFLS Language (generation Model: Context Free grammars (CFgs)
(2a) We will prove these 2 characterizations are equivalent:

$$
\underbrace{\text { PUSHDOWN AUTOMATA (RDA) }}_{\text {Machine Model }} \equiv \underbrace{\text { Context Free grammars (CFgS) }}_{\text {Language (Generation Mode) }}
$$

(3) Pumping Lemma (for CFL's): used to prove that some languages are not context Free Languages

Context - Free Languages a PushDamn AUtomatic
Note: We will present in this order: (1), (2), (3), Ra
Book presents in this order: (2), (1), (20), (3)
(1) We will first define CFL's to be those Languages accepted by PUSHDOWN AVTOMATA (PDA) Machine Model
(2) Then we give an alternative characterization of CFLS Language l generation Model: Context Free grammars (CFgs)
(20) We will prove these 2 characterizations are equivalent:

$$
\underbrace{\text { PUSHDOWN AUTOMATA (RDA) }}_{\text {Machine Model }} \equiv \underbrace{\text { Context Free grammars (CAyS) }}_{\text {Language (Generation Mode) }}
$$

(3) Pumping Lemma (for CFL's): used to prove that some languages are not context free Languages
(1) PushDarn Automatic

- Regular Languages/NFA

Languages recognizable by scanning inpuit once from left \rightarrow right, using a finite amount of Memory

- We saw examples of Languages that are not regular:

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

- Pushdown Automata (PDAs) generalize NFA」 to allow for a limited kind of (unbounded) memory: a stuck

Examples of Languages

NFA: (inite memoy $-2 x$
(state contron)

PDA: (Like NFAS, PDA is a Nondeterministic model)

Example 1 $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$

- PDAs are NFA's with extra stack
- In every step we can read Next symbol (or E-transition), move to a new state and push or pop or' replace top symbol on stack

Idea:

- Start by pushing special "\$" symbol onto stack
- Read O's and push them onto stack
- as soon as we sec a 1 , start popping a 0 off stack everytime we see a 1.
- Nondeterministicelly guess when we are at end of input. If there is the symbol "\$" on top of stack, go to accept state

Example 1

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

- PDAs are NFA's with extra stack
- In every step we can read wext symbol (or E-transition), move to a New state and push or pop or' replace top symbol on stack transition " $a, b \rightarrow c$ " means when reading input symbol a, if b is symbol on top of stack, replace b by c
$\rightarrow " a, b \rightarrow \varepsilon$ " means if reading input symbol a, can pop b off stack
pop $a, b \rightarrow \varepsilon$ means
push \rightarrow " $a, \varepsilon \rightarrow c$ " means if reading symbol a, push conto top of stack
$Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\} \rightarrow$ states
$\Sigma=\{0,1\} \longrightarrow$ input alphabet
$\Gamma=\{0,\} \longrightarrow$ stack alphabet
$F=\left\{q_{0}, q_{4}\right\} \longrightarrow$ accept states
$q_{0} \quad \longrightarrow$ Start state
δ

NA:
$q \frac{0 \text { or } 1 \text { or } \varepsilon}{(q)}$

Example 1
" $a, b \rightarrow c$ " means when reading input symbol a, if b is symbol on top of stack, replace b by c
" $a, b \rightarrow \varepsilon$ " means if reading input symbol a, can pop b off stack
" $a, \varepsilon \rightarrow c$ " means if reading symbol a, push conto top of stack

$$
\begin{aligned}
& Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\} \\
& \Sigma=\{0,1\} \\
& \Gamma=\{0, \$\} \\
& F=\left\{q_{0}, q_{3}\right\} \\
& q_{0}
\end{aligned}
$$

PDA accepts an input w if there exists a computation path starting in q_{0} and ending in an accept state

Say we want to simulate this transition:

symbol read in input string and top of stack contains \$, then push another $\$$ and move to state q_{j}
This can be simulated by either (a) or (b)

(a)

Example 1

M:
$Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$
$\varepsilon=\{0,1\}$
$\Gamma=\{0,4\}$

$$
F=\left\{q_{0}, q_{3}\right\}
$$

q。

On input $w=0011$: (so Maccepts w)

Example 1

$$
\begin{aligned}
& Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\} \\
& \Sigma=\{0,1\} \\
& \Gamma=\{0, q\} \\
& F=\left\{q_{0}, q_{3}\right\} \\
& q_{0}
\end{aligned}
$$

M:

on input $w=00111$:
rejects since wo sequence of moves exists that agrees with transition function and ends in accept state

$$
\mathcal{L}(M)=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

PDA (Eormal Description)
$A P D A$ is described by a 6 -tuple $M=\left(Q, \sum_{\uparrow}, \Gamma_{1}, \delta_{1} \varepsilon_{0}, F_{\alpha}\right.$

$$
\left.\delta: Q \times\left\{\sum \cup k\right]\right\} \times\{\Gamma \cup\{\varepsilon\}\} \rightarrow P(Q \times\{\Gamma \cup \varepsilon\})
$$

M accepts w if w can be written as $w=w_{1} w_{2} w_{3} \ldots w_{m}$, where each $w_{1} \in\{\varepsilon \cup \varepsilon\}$, and \exists a sequence of states $r_{0}, r_{1}, \cdots, r_{m} \in Q$ and \exists sequence of strings $\underbrace{S_{0}, S_{1}, \ldots, S_{m}}_{S_{i}=\text { contents of stack of time } i} \in \Gamma^{x}$ sat is fying:

$$
s_{i}=\text { contents of stack of time } i
$$

(1) $r_{0}=q_{0}, s_{0}=\varepsilon$ (start state is ε_{0}, stack initially empty)
(2) For all $i=0,1, \ldots, m-1 \quad\left(r_{i+1}, b\right) \in \delta\left(r_{i}, w_{i+1}, a\right)$ where $s_{i}=a \in \quad a, b \in \Gamma_{v \varepsilon}$
(M moves according to transition function δ)
(3) $r_{m} \in F$ (final state is an accept state)

$$
\begin{aligned}
\text { original }_{W} & =0011 \\
W & =\varepsilon 0 \varepsilon \varepsilon 011
\end{aligned}
$$

PDA (Eormal Description)
A PDA is described by a 6 -tuple $M=\left(Q, \sum_{\uparrow}, \Gamma_{1}, \delta_{1} \varepsilon_{0}, F_{0}\right.$

$$
\delta: Q \times\{\varepsilon \cup \varepsilon\} \times\{\Gamma \cup \varepsilon\} \rightarrow P(Q \times\{\Gamma \cup \varepsilon\})
$$

M accepts w if w can be written as $w=w_{1} w_{2} w_{3} \ldots w_{m}$, where each $w_{1} \in\left\{\Sigma \cup\{ \}\right.$, and \exists a sequence of states $r_{0}, r_{1}, \ldots, r_{m} \in Q$ and \exists sequence of strings $\underbrace{S_{0}, S_{1}, \ldots, S_{m}}_{S_{1}=\text { contents of stack ot time }} \in \Gamma^{x}$ sat is fying:
$S_{i}=$ contents of stack of time i
(1) $r_{0}=q_{0}, s_{0}=\varepsilon \quad$ (start state is q_{0}, stack initially empty)
(2) For all $i=0,1, \ldots, m-1 \quad\left(r_{i+1}, b\right) \in \delta\left(r_{i}, w_{i+1}, a\right)$ where $s_{i}=a t \quad a, b \in \Gamma_{v} \varepsilon$ (M moves according to transition function δ) $S_{\text {ill }}=b t \quad t \in \Gamma^{*}$
(3) $r_{m} \in F$ (final state is an accept state)

$$
\mathscr{L}(M)=\left\{w \in \Sigma^{*} \mid M \text { accepts } w\right\}
$$

A langrage is a CEL if some PDA accepts it

PDA (Eormal Description)
$A P D A$ is described by a 6 -tuple $M=\left(Q, \sum_{\uparrow}, \Gamma_{1}, \delta_{1} \varepsilon_{0}, F_{0}\right.$
states $\underset{\text { anphoubet }}{\substack{\text { tape } \\ \text { alphabet } \\ \text { stat } \\ \text { state }}} \begin{gathered}\text { accept } \\ \text { states }\end{gathered}$

$$
\delta: Q \times\{\varepsilon \cup \varepsilon\} \times\{\Gamma \cup \varepsilon\} \rightarrow P(Q \times\{\Gamma \cup \varepsilon\})
$$

Notes: We only accept if we are in an accept state when all of w is processed.

Note that we can accept a string w even if stack is not empty at end of processing w.

