
Lectures
r

- Hwi due tomorrow on grade scope

- Today : Intro to Context Free Languages
and Pushdown Automata

N0nÉiFfut .

given
some DFA M ,

want to construct
new NFA MI

say
we
want to accept w if either d) or 41

holds :

d) : string w has length exactly 2
G) : w ends in one of the 1st 3 states q

,
,q
,
, §

Za 26 2C

EETs
onside

?⃝ =

go 9, I - i - ZoM : * c- E

M
'

; accept if : either INI = 2

or w ends in one of the states 9.g.
§

Idea behind NFA - is to guess one A there

good possibilities & check .

0% start state UM
, except

my
→

cheeks ⑧,•-% This
path

if IWI .=2 accepts
"
go ,

£0,1 q Iff is %q?⃝ Weng §up inIa . 0¥ § '

"
%
,

• f. a

- 9
Lt

in
,

hz
'

↳

↳ " do
,
IWKZ] 4 :{ v1 mewl ends in state q , }

↳ { WI
'
'

Ez}
↳=/ w 1 " % }

Now spore we want to accept W iff + ② I

both hold ,
where

↳
-7 d

') 8 IWI is odd

M1
for

µ) : M on w ends in state q
,f- {w/

cut is odd]

→Mi

AE /w/ Mcw) ends in stang ,]

want to construct
M accepts n<zÑ

-

How to construct it from M
,
✗Mz ?
It

c) # Rewrite
"

intersection
"

in terms of f- and
negation

union

④ 4^4=-4+7
F. I
-
-

4) "

cross Product
" construction

. [M ,
: QF % . - - 9,0

Mz : QI B -
-
- - r

, ,new M :

Q={ (Giri) / 9ieQ
, rjeQ,}

S :@i. r;)
,
o →air;)

statstaoo→ q?⃝

(Ñ

accept states :

crq.GR) / gie accept state AM,

r
,

c- "
" "

Ma }r
.

Context - Free Languages & PushDown Automata

Recall what we did for the class of Regular Languages :

① For regular languages we first defined
the regular languages

to be the languages recognited by some DFA NFA)

② We gave an alternative
characterization of regular Languages :

Language / generation model : Regular Expressions

② we proved that these 2 characterizations are equivalent

DFA / NFA = Regular Expressions

IÉei iÉFÉmodel

③ PIpinynem-mekfforneg.LI : Used to prove that some languages
are

not regular .

-

Context - Free Languages & PushDown Automata

Now we will define a larger class of languages that inciud.es
all regular Languages plus New ones .

① We will first define CFL's to be those languages accepted
by PUSHDOWN AUTOMATA (PDA)

② then we give an alternative characterization of cF↳

Language/generation Model : context Free grammars Ccfgs)
② We will prove these 2 characterizations are equivalent :

PUSHDOWN AUTOMATA (PDA) I context Free grammars (c.Fgs)
Iif ¥ÉÉodeI

③ PLmEÉnELEI : used to prove that
some languages are Not Context Free Languages

-

Context - Free Languages & PushDown Automata

\

Note : we will present in this order : ①
,
② ,③ ,
①

Book presents in this order : ③
,
①

,
② ,③

① We will first define CFL's to be those languages accepted
by PUSHDOWN AUTOMATA (PDA) ← Machine Model

② then we give an alternative characterization of cF↳

Language/generation Model : context Free grammars Ccfgs)
④ We will prove these 2 characterizations are equivalent :

PUSHDOWN AUTOMATA (PDA) I context Free grammars (c.Fgs)
Iif ¥ÉÉodeI

③ Pumping Lemmon (for CFL's) : used to prove that
TÑangTaeTare Not Context Free Languages

① PushDamAmata

• Regular Languages/ NFA

Languages recognizable by scanning input
once from left → right , using a finite amount

of Memory

• We saw examples of Languages that are not regular :

L= { on 1^1 n > o]

• Pushdown Automata (PDAs) generation NFA to allow for

a limited kind of (unbounded) memory : a- stuck

Examples of Languages

L1 = { WE {0,15 f w has an even number of 1's}

Lz = { we {0,13*1 w ends with 011 } \
↳ = { we { 0,13*1 W ' 0^1

"

,

n > I } DFA
D

Ly = { we {0,1125 I w :O" I
"

2
"

,
n > I } •

PDA

•

7
All Languages
LEE

-

NEA : finite memory_ÉÉ÷← inputestate control)
9

PDA : (Like
NFAS

,
PDA is a Non-deterministic model)

finite memory-→
www.my,
,⇒y,m

↳-
read only tape

¥← stack

Er 4--10^1^1 neo }

• PDAs are NFA's with extra stack

• In every step we can read
next symbol (or e-transition) ,

move to a new state
and push or pop or

'

replace top symbol on stuck

Idea_ :

• start by pushing special
"

$
"

symbol onto stack

• Read 0's and push them onto stack

• as soon as we see a 1
,
start popping a 0 off stack

every time
we see a 1

.

• Nondeterministic 14 guess when we are at end of input .

If there is the symbol
"

$
"

on top of stack, go
to accept state

¥1 4=10^1^1 neo }

• PDAs are NFA's with extra stack

• In every step we can read
next symbol (or e-transition) ,

move to a new state
and push or pop n' replace top symbol on stuck

transition "
a ,b → c

"

means when reading input symbol a ,
if b is symbol

on top of stack, replace b by C

→ "
a ,b → e

"

means if reading input symbol a, can pop b off stack
pop

push
→

"
a ,E → c

"

means if reading symbol a, push c onto top of stack

Q = 990,992,9, } → states
{ = { on } → input alphabet ④⑥¥#°
r -

- { o
,
$3 → stack alphabet

g.
92

F = { go.gg} → accept states

qo
→ start state

0 or 1 or E

s NFA : ④→ QQ

"
a ,b → c

"

means when reading input symbol a ,
if b is symbol

Examples
on top of stack, replace b by C

"
a ,b → e

"

means if reading input symbol a, can pop b off stack

"
a ,E → c

"

means if reading symbol a, push conto top of stack

^

7

Q = 990,942,9s }
→ go
$o q

,

<→ °

{ = {on }

p -
. { 0

,
$3 ↳ 1,0 → ef- = { 90,933

% 9
,
- qz 21,0 →

E

E. $ → e

PDA accepts an input w if there exists a ssonputatim path
starting in qo and ending in an accept state

Say we want to simulate this transition :

?⃝→?⃝If 0 Is Next

symbol read in input ,

string and top of
stack contains $

,
then

push another $
and more to state

qj
this can be simulated by either (a) or (b)

met
* .¥⇒?⃝$:#⑤
a) ?⃝0*-5

"

M :
^

7E¥f Q --9%4%4 ?
→ go $oq ,

↳ °

{ = { on }

r -
- { 0

,
$ } ↳ 1,0 → E

F = { 90,933
% 9

, <g$→I qz
☐ ' 10 → E

on input w
-

-0011 : (so M accepts w)

⑧ iÉ⇒④•¥E⇒⑨- ⇒④Et
Ll VI

°⑤Ñ⇒⑨¥¥④ É
⇒

¥. ¥

M :
^

7

Exampled Q = 9%44,9 ?
→ go

.

$→ q
,

<→ °

E = {0,13
pm -

- { 0
,
$ } if 1,0 → E

F = { 90,933
% % <q$→e- Ez

21,0 → E

on input w
-

-00111 :

rejects since No sequence of moves exists that

agrees with transition function and ends in accept state

LCM) = { 0^1^1 neo} Y¥¥¥
Ez

PDA (Formal Description]

A PDA is described by a
6 - tuple M = (Q

,
E

,

P
,

S
,
Eo , F)

T T f ←
acceptstates input stack start

alphabet
'

agphabet state states

S : Qx {EvkB×{ru → P(Qx{rue })

M ciccepts w if W can be written as w = W
, Wzw, - . - mm

,

where

each W
,

C- {Eve }
,

and I a sequence of states no ,r, , - . , rm c-Q

and F sequence
of strings EM satisfying :

Si contents
of stack at time i

① no = qo , so = E (start state is qo
,
stack initially empty)

a. be Pvc
② for all i. 0,1, . . ,m -1 Crit

, ,
b) c- 8 (ri , wa , ,

a) where Si =at
ye p*

Sit , =bt

(M moves according to transition functions)
original③ rmef (final state is an accept state) w= 0011

W = EOEE 011

PDA (Formal Description]

A PDA is described by a
6 - tuple M = (Q

,
E

,

P
,

S
,
Eo , F)

T T fstates input
alphabet tape acceptstart

alphabet state states

S : Qx {Evel ✗ {rue } → P(Qx{rue })

M ciccepts w if W can be written as w = W
, Wzw, - . - mm

,

where

each W
,

C- {Eve }
,

and I a sequence of states no ,r, , - . , rm c-Q

and F sequence
of strings c- M satisfying :

Si contents
of stack at time i

① no = qo , so = E (start state is qo
,
stack initially empty)

② for all i. 0,1 , . . ,m -1 Crit
, ,
b) c- 8 (ri , wa , ,

a) where Si = at a) be Rue

te p*
Sit , =bt

(M moves according to transition functions)

③ rmef (final state is an accept state)

LCM) = { we I M accepts w }
A language is a CFL if some PDA accepts it

PDA (Formal Description]

A PDA is described by a
6 - tuple M = (Q

,
E

,

P
,

S
,
Eo , F)

T T fstates input
←

accept
alphabet todfphabet %¥e states

S : Qx {Evel ✗ {rue } → PCQ ✗ {rue })

Notes : We only accept if we are in an accept state

when all of W is processed.

Note that we can accept a string w even if

stack is not empty at end of processing
W

.

