Lecture 7

- Hos due (Tues) on graclescope
- Today: DFA minimration, practice problems, wrap up Regular Languages

Regular "Languages - Summary

1. DFAs and Regular Languages
2. NEAs, and equivalence with $D F A_{s}$
3. Closure Properties of Regular Languages
4. Regular Expressions and Equivalence with Regular Languages
5. Proving that a language is not regular: Pumping Lemma

DFA state minimization \qquad we wort cover
other Practice Problems
(1.) Construct a DFA M accepting the Language corresponding to the regular expression $(0+1)^{*} 011(0+1)^{*}$
other Practice Problems
(1.) Construct a DFA M accepting the Language corresponding to the regular expression $(0+1)^{*} 011(0+1)^{*}$

DeA:

q_{0} : Not began to see the substring on l
q_{1} : we han seen the beginning o

$$
q_{2}
$$

q_{3} ". " the entire substring 011
other Practice Problems
(1.) Construct a DFA M accepting the Language correponding to the regulan explession $(0+1)^{*} 011(0+1)^{*}$

DFA:

NFA:

other Practice Problems
(2.) Write regular expressions for the following languages
(a) The set of all $w \in\{0,1\}^{*}$ that do wot contain the susstring 00
other Practice Problems
(2.) Write regular expressions for the following languages
(a) The set of all $w \in\{0,1\}^{*}$ that do wot contain the substring 00

$$
(1+01)^{*} \cdot(\varepsilon+0)=(1+01)^{*} \times(1+01)^{*} 0
$$

$$
\begin{aligned}
& (0+1)^{\phi}=(0+1)^{i} \quad \forall i=0,1,2 \ldots \\
& (0+1)^{2}: \quad 00,01,10,11
\end{aligned}
$$

other Practice Problems
2. Write regular expressions for the following languages
(a) The set of all $w \in\{0,1\}^{*}$ that do wot contain the substring 00

$$
(1+01)^{*}(\varepsilon+0)
$$

(b) The set of all $w \in\{0,1\}^{*}$ that contain at least 31^{\prime} s
other Practice Problems
(2.) Write regular expressions for the following languages
(a) The set of all $w \in\{0,1\}^{*}$ that do wot contain the substring 00

$$
(1+01)^{*}(\varepsilon+0)
$$

(b) The set of all $w \in\{0,1\}^{*}$ that contain at least 31^{\prime} s

$$
\left.(0+1)^{\alpha} 1(0+1)^{\alpha} 1(0+1)^{\alpha}\right](0+1)^{\alpha}
$$

(c) w contains exactly 3 l's

$$
0^{\star} 70^{\star} 100^{b} 10^{\phi^{k}}
$$

other Practice Problems
(3.) Let $L=\left\{a^{n} \mid n\right.$ is prime $\}$

Prove that L is not regular.

$$
\begin{aligned}
\text { Ex. } & \begin{array}{rlrl}
w & =\text { abaca } & & (n=5) \\
w & =\text { aaaaacaa } & (n=7) & \\
w & \in L \\
w & \text { aaa } & & (n=4)
\end{array} \in \in L
\end{aligned}
$$

other Practice Problems
(3.) Let $L=\left\{a^{n} \mid n\right.$ is prime $\}$

Prove that L is not regular.

Proof
Assume for contradiction that L is regular, Let M be a k-state DFA that accepts L

- Let $w=a^{P}$ where p is a prime number, $p \geq K$. Note that $w \in L$.
other Practice Problems
(3.) Let $L=\left\{a^{n} \mid n\right.$ is prime $\}$

Prove that L is not regular.
Proof Assume for contradiction that L is regular, Let M be a k-state DFA that accepts L

- Let $w=a^{p}$ where p is a prime number, $p \geqslant K$.

Note that $W \in L$, so w should be accepted by M.

- By Pumping Lemma, we can write $w=x y z$, $|x y| \leqslant k,|y|>0$ such that for all $i, w^{\prime}=x y^{i} z$ is also accepted by M
- Since $|x y| \leqslant k$ and $p \geq k, w=\frac{a^{u}}{x} \underbrace{a^{v}}_{y} \underbrace{a^{p-u-v}}_{z}, u+v \leqslant k \leqslant p$
- Pick $l^{\prime}=p+1$.
other Practice Problems
(3.) Let $L=\left\{a^{n} \mid n\right.$ is prime $\}$

- By Pumping Lemma, we can write $w=x y z$, $|x y| \leqslant k,|y|>0$ such that for all $i, w^{\prime}=x y^{i} z$ is also in L.
- Since $|x y| \leqslant k$ and $p \geq k, w=\underbrace{a^{u}}_{x} \underbrace{a^{v}}_{y} \underbrace{a^{p-u-v}}_{z}, u+v \leqslant k \leqslant p$
- Pick $i=p+1$. Then $w^{\prime}=x y^{\prime} z=a^{u+v(p+1)+p-u-v}$

$$
\begin{aligned}
& =a^{v(p+1)+p-v} \\
& =a^{v p+p} \\
& =a^{p(v+1)}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
w^{\prime} & =x y^{\prime} z \\
& =a^{u+v i+p-u-v} \\
& =v i+p-v \\
\underbrace{p+v(i-1)}_{p(v+1)}
\end{array}\right)
$$

$\therefore \omega^{\prime} \notin$, so ne've reached a conoradiotton.
other Practice Problems
(4.) Let $\Sigma_{3}=\left\{\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$
$\omega \in \Sigma_{3}^{*}$ looks like e.g. $= \pm\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\binom{0}{0}\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$

Let $B=\left\{w \in \Sigma_{3}^{*}\right.$ | the broom row of w (as a binary number) equals the sum of the top two rows $\}$

Examples: $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) .\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right) \in B$

$$
\begin{array}{r}
1011 \\
+\quad 001 \\
\hline 100 \\
\\
01 \\
001 \\
\hline 01
\end{array}
$$

other Practice Problems
(4.) Let $\Sigma_{3}=\left\{\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$

Let $B=\left\{w \in \Sigma_{3}^{*}\right.$ | the bottom row of w (as a binary number) equals the sum of the top two rows $\}$

Examples: $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right) \in B$

$$
\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \quad B+\begin{array}{ll}
0 & 1 \\
0 & 0 \\
\hline 0 & 1
\end{array}
$$

Prov that B is regular
other Practice Problems
(4.) Let $\Sigma_{3}=\left\{\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\binom{0}{0},\binom{0}{1},\binom{1}{0},\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\binom{1}{0},\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$

Let $B=\left\{w \in \sum_{3}^{*} \mid\right.$ the bottom row of w (as a binary number) equals the sum of the top two rows $\}$

$$
\text { Examples: } \begin{array}{rl}
\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \cdot\left(\begin{array}{ll}
1 \\
1 \\
0
\end{array}\right) & +B \quad \begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1
\end{array} \\
\hline 1 & 0
\end{array} 0
$$

Idea: Show that B^{R} is regular (and therefore so is B)
In general if L is a lansuaje $L \subseteq \Sigma^{*}$,

$$
L^{R}=\left\{w \mid w^{R} \in L\right\}
$$

Example
let $L=\{w \mid w$ starts with a 1$\} \quad(\operatorname{an}\{0,1\})$
$L^{R}=\{w \mid w$ ends in a 1$\}$

$$
\left.\begin{array}{ll}
w_{1}^{R}=0001 \in L^{R} & w_{1}=1000 \\
w_{2}^{R}=0011 \in L^{R} & w_{2}=1100
\end{array}\right] \in L
$$

other Practice Problems
(4.) Let $\Sigma_{3}=\left\{\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\binom{0}{0},\binom{0}{1},\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\binom{1}{0},\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$

Let $B=\left\{w \in \sum_{3}^{*} \mid\right.$ the bottom row of w (as a binary number) equals the sum of the top two rows \}

Examples:

$$
\begin{aligned}
& W=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \cdot\binom{10}{0} \cdot\binom{1}{1} \in B \\
& W=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \times B \quad W^{R}=\begin{array}{lll}
1 & 0 & 10 \\
0 & 0 \\
1 & 1 & 00 \\
11
\end{array}
\end{aligned}
$$

Idea: show that B^{R} is regular (and therefore so is B)
(1) Show: \forall Language $L \leq \sum^{8}$,
L is regular if and only of L^{R} is regular.
other Practice Problems
(4.) Let $\Sigma_{3}=\left\{\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\binom{0}{0},\binom{0}{1},\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\binom{1}{0},\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$

Let $B=\left\{w \in \sum_{3}^{*} \mid\right.$ the bottom row of w (as a binary number) equals the sum of the top two rows \}

Examples: $W=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \cdot\binom{0}{0} \cdot\binom{1}{1} \in B$

$$
W^{R}=\begin{array}{llll}
1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 \\
0 & 0 & 1
\end{array}
$$

$$
W=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \times B \quad W^{R}=\begin{array}{lll}
1 & 0 & 10 \\
0 & 0 & 00 \\
1 & 1 & 11
\end{array}
$$

Idea: Show that B^{R} is regular (and therefor so is B)
other Practice Problems

other Practice Problems
(5.) State if each of the inequalities is True/False. Justify your answer.
(a) $(r s+r)^{*}=r(s r+r)^{*}$

Ex

$$
r s \in(r s+r)^{8}
$$

$$
r s \& r(s r+r)^{*}
$$

Ez

$$
\begin{aligned}
& \varepsilon \in(r \sin)^{*} \\
& \in \& r(8 r+r)^{k}
\end{aligned}
$$

other Practice Problems
(5.) State if each of the inequalities is True/ False. Justify your answer.
(a) $(r s+r)^{*}=r(s r+r)^{*}$

Not equal.

$$
\begin{aligned}
& \varepsilon \in(r s+r)^{*}, \varepsilon r(s r+r)^{*} \\
& r s \in(r s+r)^{*}, r s \notin r(s \sigma+r)^{*}
\end{aligned}
$$

other Practice Problems
(5.) State if each of the inequalities is True/ False. Justify your answer.
(b) $\quad s \cdot(r \cdot s+s)^{*}=r^{*} \cdot s\left(r \cdot r^{*} \cdot s\right)^{*}$

$$
\begin{aligned}
& r s \notin s(r s+s)^{\varnothing} \\
& r s \in
\end{aligned}
$$

other Practice Problems
(5.) State if each of the inequalities is True/ False. Justify your answer.
(b)

$$
\begin{aligned}
& s \cdot(r \cdot s+s)^{*}=r^{*} \cdot s\left(r \cdot r^{*} \cdot s\right)^{*} \\
& \text { No rs \&s(rs+s)})^{*} \\
& r s \in r s\left(r r^{*} s\right)^{*} \\
& s r r s \in r^{*} s\left(r r^{*} s\right)^{*}, \operatorname{srrs} \in s(r s+s)^{*}
\end{aligned}
$$

other Practice Problems
(5.) State if each of the inequalities is True/False. Justify your answer.
(c) $(r+s)^{*}=\left(r^{*}+s^{*}\right)^{*}$

all possible

$$
w \in\{\cdot r, s\}^{*}
$$

$$
\begin{aligned}
& L\left[\left(r^{\prime}+s^{\prime}\right)^{*}\right] \\
& \subseteq L\left[\left(r^{*}+s^{*}\right)^{*}\right]
\end{aligned}
$$

so the language on $\mathrm{kt} L\left[\left(r^{*}+s^{*}\right)^{\phi}\right]$, contains the language on the left side, $L\left[(r+s)^{\$}\right]$ on the other hand, $L\left[(r+s)^{8}\right]$ is all string, so same.
other Practice Problems
(5.) State if each of the inequalities is True/False. Justify your answer.
(c) $(r+s)^{*}=\left(r^{*}+s^{*}\right)^{*}$

Yes. Both Languages are the same?
(1)

$$
\begin{aligned}
& \mathcal{L}\left[(r+s)^{*}\right] \subseteq \mathcal{L}\left[\left(r^{*}+s^{*}\right)^{*}\right]: \\
& \left.\quad \mathcal{L}[(r)] \subseteq \mathcal{L}\left[\left(r^{*}\right)\right], \quad \mathcal{L}(s)\right] \subseteq \mathcal{L}\left[\left(s^{*}\right)\right] \\
& \therefore \mathcal{L}[(r+s)] \subseteq \mathcal{L}\left[\left(r^{*}+s^{*}\right)\right] \\
& \therefore \mathcal{L}\left[(r+s)^{*}\right] \leq \mathcal{L}\left[\left(r^{*}+s^{*}\right)^{*}\right]
\end{aligned}
$$

other Practice Problems
(5.) State if each of the inequalities is True/False. Justify your answer.
(c) $(r+s)^{*}=\left(r^{*}+s^{*}\right)^{*}$
(ii) $\mathcal{L}\left[\left(r^{\phi}+s^{8}\right)^{\alpha}\right] \subseteq \mathcal{L}\left[(r+s)^{*}\right]:$

Siñ-e $\mathcal{L}\left[(r+s)^{6}\right]=\{r, s\}^{*}=$ all strings over $\mathcal{L}=\{a, b\}$, it follows that $\mathcal{Z}\left[\left(r^{*}+s^{x}\right)^{*}\right] \subseteq f\left((r+s)^{x}\right]$ (since every language is a subset of $\{r, s\}^{*}$)

