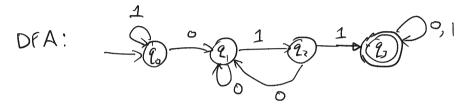
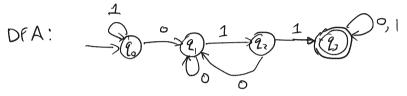
,

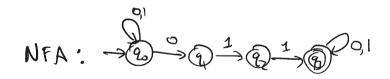
(1.) Construct a DFA M accepting the language corresponding to the regular expession (0+1)*011 (0+1)*

(1.) Construct a DFA M accepting the Language corresponding to the regular expression (0+1)*0+1 (0+1)*



1. Construct a DFA M accepting the Language corresponding to the regular expession (0+1)*0+1 (0+1)*





$$(Q+I)^{*} = (Q+I)^{i}$$
 $\forall i = 0, 1, 2, ... - (Q+I)^{*}$
 $(Q+I)^{*} : 00, 01, 10, 1)$

.

2

(b) The set of all we so, 1)* that contain at least 3 1's

3. Let
$$L = \{a^n \mid n \text{ is prime}\}$$

Prove that L is Not regular.
Ex. $W = aaaaaa (n=6) \in L$
 $W = aaaaaaa (n=7) \in L$
 $W = aaaaa (n=4) \in L$

· Pick L'=p+1,

other Practice Roblems
3. Let
$$L = \{\alpha^n \mid n \text{ is prime}\}$$

• Let $W = 1^{\text{P}}$ where p is prime, $p \ge K_{\text{e}}$. Note that WeL.
• By Pumping Lemma, we can write $W \ge x y \ge y$, $|xy| \le K$, $|y| \ge 0$
such that for all i , $W^{\text{e}} \ge x y \ge z$, $|xy| \le K$, $|y| \ge 0$
such that for all i , $W^{\text{e}} \ge x y' \ge z$, $|xy| \le K$, $|y| \ge 0$
• Since $|xy| \le K$ and $p \ge K$, $W = \bigcup_{x \to y} \bigcup_{y \to y} \bigcup_{z \to y} u_{x} \lor y_{z}$, $u_{x} \lor K \le p$
• Pick $i = p+1$. Then $W^{\text{e}} \ge x y'^{\text{e}} \ge a^{\text{utv}(p+1)} + p^{-u-v}$
 $= \alpha_{x}^{v(p+1)} + p^{-u-v}$
 $= \alpha_{x}^{v(p+1)} + p^{-v}$
 $= \alpha_{x}^{v(p+1)}$
 $\therefore W^{\text{e}} \ge 1$, so verve reached a constructivition.

$$\frac{\text{other Practice Problems}}{(4) \text{ Let } z_3 = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix}$$

Prove that B is regular.

٨

(4) Let
$$z_3 \in \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0$$

Evenple
let
$$L = \frac{8}{2} w | w storts with a I } (au (0,13))$$

 $L^{R} = \{w | w ends in a I \}$

$$w_{2}^{R} = 0001 \in L^{R} \quad w_{1} = 10000 \quad f \in L$$

$$w_{2}^{R} = 0011 \in L^{R} \quad w_{2} = 11100 \quad f \in L$$

$$w_{3}^{R} = 11110 \quad f \in R \quad w_{3} = 011111 \quad f \in L$$

٨

4. Let
$$\Xi_{3} = \left\{ \begin{pmatrix} a \\ b \end{pmatrix}, \end{pmatrix},$$

٨

4. Let
$$z_3 = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0$$

Practice Problems other Let $\boldsymbol{z}_{3} \in \left\{ \begin{pmatrix} \boldsymbol{o} \\ \boldsymbol{o} \end{pmatrix}, \begin{pmatrix} \boldsymbol{o} \\ \boldsymbol{i} \end{pmatrix}, \begin{pmatrix} \boldsymbol{i} \\ \boldsymbol{i} \end{pmatrix}, \end{pmatrix} \end{pmatrix}$ Let $B = \{ w \in \mathbb{Z}_3^* \mid \text{ the bottom row of } w \text{ (as a binary number)} \\ equals the sum of the top two rows }$ 4. $\bigwedge_{\substack{\left(\begin{array}{c} 0\\ i\\ 0\end{array}\right)}}^{1} \left(\begin{array}{c} 1\\ 0\\ 0\end{array}\right), \left(\begin{array}{c} 1\\ 0\\ 0\end{array}\right), \left(\begin{array}{c} 1\\ 1\\ 0\\ 1\end{array}\right)$ $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 0 K 20 G, e accepts B^R carry= carry=1 ', ', $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 1\\ 1\\ 1\\ 1 \end{pmatrix}, \begin{pmatrix} 1\\ 0\\ 0\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 0\\ 0\\ 1 \end{pmatrix}, \begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix}$ 9,7

State if each of the inequalities is True/False. Justify your answer. $(a) (rs+r)^{*} = r(sr+r)^{*}$ $\left(\begin{array}{c} (0 \neq 1)^{\geq 1} = (0 + 1)(0 + 1)^{\ast} \end{array} \right)$ $\frac{f_{x,4}}{f_{x,4}} \qquad \frac{rs \in (rs + r)^{x}}{rs \& r(sr + r)^{x}}$ * (r +27) 23 62 E & r(Br+r)*

5. State if each of the inequalities is true (False,
Justify your answer.
(a)
$$(rs+r)^{*} = r(sr+r)^{*}$$

pot equal,

$$\varepsilon \in (rs+r)^{*}$$
, $\varepsilon \ll r(sr+r)^{*}$
 $rs \in (rs+r)^{*}$, $rs \notin r(sr+r)^{*}$

(b)
$$s(rs+s)^* = r^*s(r\cdot r^*\cdot s)^*$$

 $rs \in s(rs+s)^{\infty}$
 $rs \in s(rs+s)^{\infty}$

(6)
$$s \cdot (rs + s)^* = r^* s (r \cdot r^* \cdot s)^*$$

NO $rs \notin s (rs \cdot s)^*$
 $rs \in rs (rr^* s)^*$
 $srrs \notin r (rr^* s)^*$

5. State if each of the inequalities is true (False,
Justify your answer.
(c)
$$(r+s)^* = (r^* + s^*)^*$$

Chance $f(r'+s')^*$
all possible $f(r'+s^*)^*$
 $W \in \{r, s\}^*$

So the language on $L = L \left[\left(r^* + s^* \right)^* \right]$, contains the language on the left side, $L \left[\left(r + s \right)^* \right]$ on the other hand, $L \left[\left(r + s \right)^* \right]$ is all string, so same.

(c)
$$(r+s)^{*} = (r^{*}+s^{*})^{*}$$

Yes. Both Languages are the same:
(1) $\mathcal{L}[(r+s)^{*}] \in \mathcal{L}[(r^{*}+s^{*})^{*}]$:
 $\mathcal{L}[r] \in \mathcal{L}[(r^{*})], \mathcal{L}[s] \in \mathcal{L}$

$$\mathcal{I}[(r)] \subseteq \mathcal{I}[(r^*)], \quad \mathcal{I}[s)] \subseteq \mathcal{I}[(s^*)]$$

$$\mathcal{I}[(r+s)] \subseteq \mathcal{I}[(r^* + s^*)]$$

$$\mathcal{I}[(r+s)^*] \subseteq \mathcal{I}[(r^* + s^*)^*]$$

5.) State if each of the inequalities is true (False,
Justify your answer.
(c)
$$(r+s)^* = (r^* + s^*)^*$$

(ii) $\mathcal{I}[(r^* + s^*)^*] = \mathcal{I}[(r+s)^*]$.
Stire $\mathcal{I}[(r+s)^*] = \{r, s\}^* = all strings over \[mathbf{z} = \[mathb$