Lecture 6

- HWS due next Tues.
- Homework tips
- Pumpiñy comma

z. NFAs, and equivalence with DFAs

3. Closure Properties of Regular Languages

4. Regular Expressions and Equivalence with Regular Languages

Next: 5. Proving that a language is Not regular: Pumping Lemma

6. DFA state minimization

$$A = \{ 0^{n} 1^{n} | n \ge 0 \}$$

$$B = \{ W \in \{0,1\}^{k} | W \text{ has equal number of 0's + 1's} \}$$

$$C = \{ W \in \{0,1\}^{k} | W \text{ has equal number of occurrences} of `01' and `10' \}$$

$$L = \{0^{n} 1^{n} | n \ge 0\}$$

Tricky since we need to show that every DFA M has to make a mistake with respect to L (Show: either EWEL Not accepted by M, or EW accepted) by M and Not in L

And there are an infinite number of DFAS !

$$L = \{0^{n} 1^{n} | n \ge 0\}$$

- Not enough to show that the obvious or natural DEAS don't accept L
- · Avoid a common trap:

L may be defined by some property. But we can't assume that a DFA for L Needs to be able to recognize/compute that property

Example: Lz = {we so,1} (the number of occurrences of 'or' in w is equal to the number of occurrences of '10' 3

WARMUP: A language L'is finite if $\exists c \ge 0$ such that $|L| \le c$ Let's show: $L = \{0^n\}^n | n \ge 0\}$ is not a finite Language.

Property: A language L' is length-bounded if 3 k=0 such that every we L' has length = k

<u>Claim</u> All finite languages are length-bounded.

Proof that L= {on 1 (n>03 is Not finite:

- · Assume for sake of contradiction that L is finite
- By claim, IK=0 such that every we L has length ≤K.
- But $W = O^{K}1^{K} \in L$ and [W] > K. $L' \neq L$. So L is Not finite

Now we will show that $L = \{0^n | n \ge 0\}$ is Not regular Main tool: Pumping Lemma.

For example, suppose M has K states. Then for every $W \in \mathbb{Z}^*$ of length $= \mathbb{K} (|W| \ge \mathbb{K})$ M will loop on W.

For example, suppose M has K states. Then for every $W \in \mathbb{Z}^*$ of length = k ($|W| \ge k$) M will loop on W.

Property: For any DFA M, JK=0 such that for every WEZ*, W=K, M on W repeats a state. That is, WW, IWI=K, J a state q* satisfying: We can write W=XYZ, IYI=0, IXYI=K M is in state q* after reading X, and again is in state q* after reading XY Therefore for every i=0, the string W=XYZ behaves the same as W on M. That is: M accepts W' If and only if M accepts W

Example

 $W = 1011011 \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{2} Q_{1} Q_{2} Q_{4} \\ \chi \end{array} \qquad \begin{array}{c} Y \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{2} Q_{4} Q_{2} Q_{4} \\ \chi \end{array} \qquad \begin{array}{c} Y \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{2} Q_{4} Q_{3} Q_{0} Q_{1} \\ \chi \end{array} \qquad \begin{array}{c} Y \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{2} Q_{4} Q_{3} Q_{0} Q_{1} \\ \chi \end{array} \qquad \begin{array}{c} Y \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{2} Q_{4} Q_{3} Q_{0} Q_{1} \\ \chi \end{array} \qquad \begin{array}{c} Y \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{2} Q_{4} Q_{3} Q_{0} Q_{1} \\ \chi \end{array} \qquad \begin{array}{c} Y \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{3} Q_{0} Q_{1} \\ \chi \end{array} \qquad \begin{array}{c} Y \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{3} Q_{0} Q_{1} \\ \chi \end{array} \qquad \begin{array}{c} Y \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{2} Q_{4} Q_{3} Q_{0} Q_{1} \\ \chi \end{array} \qquad \begin{array}{c} Y \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{2} Q_{4} Q_{3} Q_{0} Q_{1} \\ \chi \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{2} Q_{4} Q_{3} Q_{0} Q_{1} \\ \chi \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{2} Q_{4} Q_{3} Q_{0} Q_{1} \\ \chi \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{5} Q_{4} Q_{2} Q_{4} Q_{3} Q_{0} Q_{1} \\ \chi \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{5} Q_{4} Q_{5} Q_{4} Q_{5} Q_{4} Q_{5} Q_{5}$

M: K=6

<u>Property</u>: For any DFA M, $\exists p \ge 0$ such that for every $w \in \mathbb{Z}^*$, $|w| \ge p$, M on w repeats a state. That is, $\forall w$, $|w| \ge p$, $\exists a \ state \ q^*$ satisfying: We can write W=xyz, 1y1>0, 1xy1=p such that M is in state q* after reading x, and again is in state q* after reading xy Therefore for every i=0, the string w'= XyiZ behaves the same as w on M. That is: Maccepts w' if and only if M accepts w Proof that L= {on in (n > 0] is not regular: Assume that L is regular + Let M be a DFA accepting L, where M has p states Consider the input w = 0^P 1^P. since we L, M should accept w (we reach,) (contradiction) By above property, we can write W = X Y Z, |Y| = 0, $|XY| \leq P$ such that $\forall i \geq 0$ XYZ is also accepted by M (since M accepts W) Since $|XY| \leq |P| |Y| > 0$, $W = X Y Z = 0^{a} 0^{b} 0^{P-a-b} 1^{P} = b > 0$ if w accepted is M, then the string $xy^2 z = 0^a 0^{2b} 0^{p-a+b} 1^p = 0^{p+b} 1^p$ is accepted by M but $xy^2 z z L$ contradiction. \therefore Lis Not regular.

Proof that L= {on in (n > 0] is not regular, contil

our string
$$W = O^{p} \mathbf{1}^{p} = O^{q} \mathbf{1}^{b} = O^{q} \mathbf{1}^{b} = O^{q} \mathbf{0} O^{q} \mathbf{0} O^{q} \mathbf{0} O^{q} \mathbf{0} O^{q} \mathbf{0} O^{q} \mathbf{1} \mathbf{1} \mathbf{1} \mathbf{1}$$

M on W accepts: $\underbrace{\mathcal{P}_{0} \mathcal{P}_{1} \mathcal{P}_{5} \mathcal{P}_{5} \mathcal{P}_{5} \mathcal{P}_{5} \mathcal{P}_{5} \mathcal{P}_{4} \mathcal{P}_{2} \mathcal{P}_{4} \mathcal{$

Proof 1 (using Pumping Lemma)
Assume for sake of contradiction that L'is regular, and let

$$M$$
 be a DFA accepting L' with p=0 states.
Consider $W = O^{P} d^{P}$. W is in L'.
By Pumping Lemma (same as previous example), W can be written as
 $W = x y z = O^{a} O^{b} O^{Pa-L} 1^{P}$ for some $b > 0$, and $W = x y^{2} z$ is also accepted
by M But $W d L$, a therefore we reach a contradiction

Here lets try a different choice
$$g$$
 w that doesn't work
(to prove that L' is not regular):
 $L' = \{w \mid w \text{ has the same number } g \text{ o's and } I's \}$
A bad choice of w : $w = 0^{P_2} 1^{P_2}$
 $w = x y z$
 $case I = 0^{a} c^{b} 0^{P_2 - a - b} 1^{P_2}$
 $case I = 0^{a} c^{b} 0^{P_2 - a - b} 1^{P_2}$
 $case I = 0^{a} c^{b} 0^{P_2 - a - b} 1^{P_2}$
 $case I = 0^{a} c^{b} 0^{P_2 - a - b} 1^{P_2}$
 $case I = 0^{a} c^{b} 0^{P_2 - a - b} 1^{P_2}$
 $case I = 0^{a} c^{b} 0^{P_2 - a - b} 1^{P_2}$
 $case I = 0^{a} c^{b} 1^{P_2 - b} q$
 $case I = 0^{a} c^{b} 1^{P_2 - b} q$
 $case I = 0^{a} c^{b} 1^{P_2 - b} q$
 $case I = 0^{a} c^{b} 1^{P_2 - b} q$
 $case I = 0^{a} 1^{b} 1^{P_2 - b} q$
 $case I = 0^{a} 1^{b} 1^{P_2 - b} q$
 $case I = 0^{a} 1^{b} 1^{P_2 - a - b} q$
 $case I = 0^{a} 1^{b} 1^{P_2 - a - b} q$
 $case I = 0^{a} 1^{b} 1^{P_2 - a - b} q$
 $case I = 0^{a} 1^{b} 1^{P_2 - a - b} q$
 $case I = 0^{a} 1^{b} 1^{P_2 - a - b} q$
 $case I = 0^{a} 1^{b} 1^{P_2 - a - b} q$
 $case I = 0^{a} 1^{b} 1^{P_2 - a - b} q$
 $case I = 0^{a} 1^{P_2 - a - b} q$
 $case I = 0^{a} 1^{P_2 - a - b} q$
 $case I = 0^{a} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A} 1^{P_2 - a - b} q$
 $case I = 0^{A}$

Let
$$L_1 = \{ 0^i 1^j \mid i < j \}$$
. L'is Not regular.

PE Assume for sake of contradiction that Lis regular, and let M be a DFA with P states that accepts Li.

Let
$$L_1 = \{ 0^i 1^j \mid i < j \}$$
. L'is Not regular.

PE Assume for sake of contradiction that Lis regular, and let M be a DFA with P states that accepts Li.

Let
$$W = 0^{p} 1^{p+1}$$
 Note that $W \in L_{1}$
By pumping Lemma, we can write $W = x Y Z$, $|xy| \le p$, $|y| \ge 1$
such that $W' = x Y^{2} Z$ is also accepted.
Since $|xy| \le p$ this means $W = 0^{a}$ 0^{b} $0^{-a-b} 1^{p+1}$ for some
then $W' = x Y^{2} Z = 0^{p+b} 1^{p+1}$
But since $b \ge 0$, $p \pm b \ge p+1$ and therefore $W \le L$,

Let
$$L_2^{=} \{ 0 \ 1^{j} \ i > j \}$$
, L is not regular (Example of pumping down)

PE Assume for sake of contradiction that Lais regular, and let M be a DFA with p states that accepts Lz.

Let
$$W = O^{PT} I^{P}$$
. Note that $W \in L_{n}$
By pumping Lemma, we can write $W = X Y Z$, $|XY| \le p$, $|Y| \ge 1$
such that $W' = XY^{o}Z = XZ$ is also accepted.
Since $|XY| \le p$ this means $W = O^{a} O^{b} O^{PT-a-b} I^{P} = b^{2}O$
then $W' = XY^{o}Z = O^{PT-b} I^{P}$
But since $b \ge 0$ $pT-b \le p$ and therefore $W \le L_{Z}$

(4) show we can always puny up w to set a w'=xy'Z (we pick i) and we need to show w'AL (typical case)