Lecture 6

- Hos due next Tues.
- Homework tips
- Pumpiry coma

1. \#3 Labelled Hond.

Assume A is Regular language.

Hoef(A) $=\{x \mid \exists y$ st. $(x|=|y|$ and

$$
x y \in A\}
$$

Assume 4, ${ }^{1} 2$ are yulan. Prove $L_{1}+L_{2}$ $L_{1} \cdot L_{2}$ are yulan
2. accept all string w such that every 4 consecutive symbols $q w$ contain's at least 2 o's.
NF transition function by both diagram and English description

Tip I pitfall
If your constructor uses closure properties then be sure $7^{n e}$ dost take an NFA for $L^{\prime} \alpha$ use conversion (A accept stars \rightarrow reject states reject " \rightarrow accept
from class to so from $L^{\prime} \longrightarrow \overline{L^{\prime}}$
condition

Recap so far

1. DFAs and Regular Languages
2. NEAs, and equivalence with $D F A_{s}$
3. Closure Properties of Regular Languages
4. Regular Expressions and Equivalence with Regular Languages

Next:
5. Proving that a language is not regular: Pumping Lemma
6. DFA state minimization

Nonregular Languages \& Pumping Lemma

Warmup: Which of these Languages is regular?

$$
A=\left\{0^{n} 1^{n} \quad(n \geqslant 0\}\right.
$$

$B=\left\{W \in\{0,1\}^{*} \quad 1 W\right.$ has equal number of 0 's +1 ' $\left.s\right\}$
$C=\left\{w \in\{0,1\}^{*} \mid w\right.$ has equal number of occurrences of 'O1' and ' 10 ' $\}$

Nonregular Languages a Pumping Lemma

Warmup: Which of these languages is regular?
$L_{1}=\left\{w \in\{0,1\}^{*}\right.$ (the number of o's in w is equal to the number of 1 's in $w\}$
$L_{2}=\left\{w \in\{0,1\}^{*}\right.$ (the number of occurrences of 'OI' in W is equal to the number of occurrences of ' 10 ' $\}$

Lower Bounds: How to prove that a Language is not regular?

$$
L=\left\{0^{n} 1^{n} \mid n \geqslant 0\right\}
$$

Tricky since we Need to show that every DFA M has to make a mistake with respect to L
(Show: either $\exists w \in L$ Not accepted by M, or $\exists w$ accepted)
by M and not in L
And there are an infinite number of DFAS!

Lower Bounds: How to prove that a Language is not regular?

$$
L=\left\{0^{n} 1^{n} \mid n \geqslant 0\right\}
$$

- Not enough to show that the obvious or natural DEA dort accept L
- Avoid a common trap:

L may be defined by some property.
But we cant resume that a DFA for L Needs to be able to recognize/compute that property
Example: $L_{2}=\left\{w \in\{0,1\}^{*} \mid\right.$ the number of occurrences of ' 01 ' in w is equal to the number of occurrences of '10' 3

Lower Bounds: How to prove that a Language is not regular?

Proof by contradiction: Assume that L is regular, so some DFA, M, accepts A.
Find some property that all regular Languages have that L doesrit have to get a contradiction.

WARMUP: A Language L 'is finite if $\exists c \geqslant 0$ such that $\mid L I \leq c$
Let's show: $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not a finite Language.

Property: A language L^{\prime} is length-bounded if $\exists k \geqslant 0$ such that every $w \in L$ has length $\leq K$

Claim All finite languages are length-bounded.

Proof that $L=\left\{0^{n} 1^{n}(n \geqslant 0\}\right.$ is Not finite:

- Assume for sake of contradiction that L is finite
- By claim, $\exists k \geqslant 0$ such that every $w \in L$ has length $\leqslant k$.
- But $w=0^{k} 1^{k} \in L$ and $|w|>K$. $\therefore L^{\prime} \neq L$. So L is not finite

Now we will show that $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is Not regular Main tool: Pumping Lemma.

Key Idea Every DFA has a finite number of states.
Therefore for any DFA M (allegedly accepting language L) for any sufficiently large $w \in \Sigma^{*}, M^{\prime}$ s computation on w will Loop.

For example, suppose M has K states. Then for every $w \in \sum^{*}$ of length $\geq k \quad(|w| \geq k), M$ will loop on w.

Key Idea Every DFA has a finite number of states.
Therefore for any DFA M (allegedly accepting Language L) for any sufficiently large $w \in \mathcal{Z}^{*}, M^{\prime}$ s computation on w will Loop.

For example, suppose M has K states. Then for every $w \in \sum^{*}$ of length $\geq k \quad(|w| \geq k), M$ will loop on w.

Example
M has $K=6$ states
So any string w of length $\geqslant 6$
will loop (repeat a state)

$$
\begin{array}{ll}
w=1011011 & q_{0} q_{1} q_{5} q_{4} q_{2} q_{1} q_{2} q_{4} \\
w=111001 & q_{0} q_{1} q_{2} q_{4} q_{3} q_{0} q_{1} \\
w=1001111 & q_{0} q_{1} q_{5} q_{4} q_{2} q_{4} q_{2}
\end{array}
$$

Proof that $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular

Property: For any DEA $M, \exists K \geqslant 0$ such that for every $w \in \Sigma^{*},(w) \geq k, M$ on w repeats a state. That is, $\forall w,|w| \geq k, \exists$ a state q^{*} satisfying:
we can write $w=x y z,|y|>0,|x y| \leq k$ satisfying:
M is in state q^{*} after reading x, and again is in state q^{*} after reading $x y$
Therefore for every $i \geqslant 0$, the string $w^{\prime}=x y^{i} z$ behaves the same as w on M. That is:
M accepts w^{\prime} if and only if M accepts w

Property: For any DEA $M, \exists k \geqslant 0$ such that for every $w \in \Sigma^{*},|w| \geqslant k$, M on w repeats a state. That is, $\forall w,|w| \equiv k, \exists$ a state q^{*} satisfying:
we can write $w=x y z,|y|>0,|x y| \leqslant k$
M is in state q^{*} after reading x, and again is in state q^{*} after reading $x y$
Therefore for every $i \geqslant 0$, the string $w^{\prime}=x y^{i} z$ behaves the
same as w on M. That is: M accepts w^{\prime} if and only if M accepts w

Example

$$
M: \quad K=6
$$

$$
w=1011011 \quad \underbrace{q_{0}}_{x} \underbrace{q_{1} q_{5} q_{4} q_{2} q_{1}}_{y}, \frac{q_{2} q_{4}}{z}
$$

$$
w=111001{\underset{x}{k}}_{\frac{\varepsilon}{y}}^{q_{0} q_{1} q_{2} q_{4} q_{3} q_{0}, \underbrace{q_{1}}_{z}}
$$

$$
w=1001111 \quad q_{y}^{q_{0} q_{1} q_{5}} \underbrace{z}_{\frac{q_{4}}{} q_{2} q_{4}}
$$

Property: For any DEA $M, \exists P \geqslant 0$ such that for every $w \in \Sigma^{*},|w| \geqslant p$, M on w reseats a state. That is, $\forall w,|w| \geqslant p, \exists$ a state q^{*} satisfying:

We can write $w=x y z,|y|>0,|x y| \leqslant p$ such that
M is in state q^{*} after reading x, and again is in state q^{*} after reading $x y$
Therefore for every $i \geqslant 0$, the string $w^{\prime}=x y^{i} z$ behaves the
same as w on M. That is: M accepts w^{\prime} if and only if M accepts w^{\prime}
Proof that $L=\left\{0^{n} 1^{n}(n \geqslant 0\}\right.$ is not regular:
Assume that L is regular * Let M be a DFA accepting L, where M has P states Consider the input $w=0^{p} 1^{p}$. since $w \in L, M$ should accept w. $\begin{aligned} & \text { otheruse } \\ & \text { we reach. } \\ & \text { contradiction }\end{aligned}$. By above property, we can write $w=x y z,|y|>0,|x y| \leqslant p$ such that $\forall i \geqslant 0 \quad x y^{i} z$ is also accepted by M (since M accepts) Since $|x y| \leqslant f,|y|>0, w=x y z=\underbrace{0^{a}}_{x} \underbrace{0^{b}}_{y} \underbrace{0^{p-a-b} 1^{p}}_{z} \quad b>0$

- if w accepted
\because Lr M, then the string $x y^{2} z=0^{a} O^{2 b} 0^{p-a-b} 1^{p}=0^{p+b} 1^{p}$ is accepted by M Get $x y^{2} z \& L$. contradiction. $\therefore L$ is not regular.

Note: ow prof that $x y^{2} z$ was fairly
simple. This iris because we chose w wisely.
$w=0^{p} A^{p} \quad w=x y z \quad * x y$ contains on k ls
since $|x y| \leqslant p$
\rightarrow Say we picked instead: $w=0^{\frac{p / 2}{2}} 1^{p / 2}$
pumping
Lemons

$$
\begin{aligned}
& \text { Pumping } \\
& \text { emma } \\
& \text { says }
\end{aligned} \quad w=x, \quad|x y| \leqslant P, \quad(y(\geq 1
$$

Now there are 3 different cases of how w can be dinded into x, y, z satisfying $|x y| \leqslant p,|y| \geqslant 1$
Case 1: $\underbrace{0^{a}}_{x} \underbrace{0^{b}}_{y} \underbrace{0^{\frac{2}{2}-a-b} 1^{p / 2}}_{z} \quad$ Case 3:
Case 2

$$
\underbrace{a}_{x} 0_{y}^{0^{\frac{p}{2}-a} 1^{c}} \frac{1^{p / 2-c}}{z}
$$

$$
\underbrace{\frac{0 / 2}{1}}_{x} \underbrace{1}_{y} \underbrace{1^{b / 2-a-b}}_{z}
$$

Proof that $L=\left\{0^{n} 1^{n}(n \geqslant 0\}\right.$ is not regular, cont d

For example:

our string $w=0^{p} 1^{p}=0^{6} 1^{6}=0000000111111$ M on w accepts: $\underbrace{q_{0} q_{1}}_{x} \underbrace{q_{5}}_{z} \underbrace{q_{5} q_{5} q_{5} q_{5} q_{4} q_{2} q_{4} q_{2} q_{4} q_{2}}_{z}$
Mon $\underbrace{x y^{z} z}$: also accepts, but $x y^{2} z \& L$ "pumped "string

Another example
Let $L^{\prime}=\left\{w \in\{0,\}^{*}\right.$ (w contains the same number of o's as i's $\}$

Proof 1 (using Pumping Lemma)
Assume for sake of contradiction that L^{\prime} is regular, and let M be a DFA accepting L^{\prime} with $p \geq 0$ states.
consider $w=0^{p} 1^{p} . \quad W$ is in L^{\prime}.
By Pumping Lemma (same as previous example), w can be written as $w=x y z=\underbrace{0^{a}}_{x} \underbrace{0^{b}}_{y} \underbrace{0^{p}-a-b}_{z} 1^{p}$ for some $b>0$, and $w^{\prime}=x y^{2} z$ is also accepted by M. But $W^{z} L$, therefore we reach a contradiction

Another example
Let $L^{\prime}=\left\{w \in\{0,1\}^{*}\left(w\right.\right.$ contains the same number of o's as $\left.1^{\prime} s\right\}$
Proof 2 (via a reduction, using closure property)
Let $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

- we already showed that L is wot regular using Pumping lemma.
- Also, we have: $L=L^{\prime} \cap L^{\prime \prime}$ where $L^{\prime \prime}=O^{*} 1^{*}$

Claim (i): $L^{\prime \prime}$ is regular
claim (ii): Regular Languages arc closed under intersection. 0,972
So if L^{\prime} is regular, then since $L^{\prime \prime}$ is also regular this would imply' L regular, but we already proved that L Ts not regular
$\therefore L^{\prime}$ is nat regular

Here Lets try a different choice of w that doesrit work (to prove that L 'is not regular):
$L^{\prime}=\{w \mid$ was the same number of O's and I's \} ~
A bad choice of $w: w=0^{p / 2} 1^{p / 2}$

$$
w=x y z
$$

$\operatorname{cose} 1 \underbrace{a}_{x} \underbrace{0^{b}}_{y} \underbrace{0^{p-a-b} 1^{P / 2}}$
in this case y could have the same number
Case 2 $0_{x}^{a} \underbrace{0^{\frac{p}{2}-a} 1^{b}}_{y} \frac{1^{\frac{p}{2}-b}}{z}$
Case $3 \underbrace{\frac{0^{2}}{2} 1^{a}}_{x} \underbrace{1^{b}}_{y} \underbrace{1^{\frac{1}{2}-a-b}}_{z}$ so no p as 1 's ir this case mil always give us a string w ' that is Not in L^{\prime}

Let $L_{1}=\left\{0^{i} 1^{j} \mid i<j\right\}$. L is not regular.
If Assume for sake of contradiction that L_{1} is regular, and let M be a DEA with P states that accepts L_{1}.

Let $L_{1}=\left\{0^{i} 1^{j} \mid i<j\right\}$. L is not regular.
If Assume for sake of contradiction that L_{1} is regular, and let M be a DEA with P states that accepts L_{1}.

Let $W=0^{P} 1^{p+1} \quad$ Note that $w \in L_{I}$
By pumping Lemma, we can write $w=x, y z, \quad|x y| \leqslant p,|y|>1$ such that $w^{\prime}=x y^{2} z$ is also accepted.
Since $|x y| \leqslant p$ this means $W=0^{0^{a}} \underbrace{0^{b} \underbrace{0^{p-a-b} 1^{p+1}}_{z} \text { for some } \quad \text { be }>0}_{y}$ then $w^{\prime}=x y^{2} z=0^{p+b} 1^{p+1}$
But since $b>0, p+b \geqslant p+1$ and therefore $W \& L$,

Let $L_{2}=\left\{0^{i} 1^{j} \mid i>j\right\}$. L is not regular (Example of $\begin{aligned} & \text { pumping down) }\end{aligned}$
If Assume for sake of contradiction that L_{2} is regular, and let M be a DEA with p states that accepts L_{2}.

Let $w=0^{p+1} 1^{p}$. Note that $w \in L_{\text {. }}$
By pumping Lemma, we can write $w=x y z$, $|x y| \leqslant p, l_{y} \mid>1$ such that $w^{\prime}=x y^{0} z=x z$ is also accepted.
Since $|x y| \leqslant p$ this means $w=\underbrace{0}_{x} \underbrace{0^{b}}_{y} \underbrace{0^{p+1-a-b}}_{z} 1^{p} b>0$ then $w^{\prime}=x y^{0} z=0^{p+1-b} 1^{p}$
But since $b>0 \quad p+1-b \leq p$ and therefore $w^{\prime} \in L_{2}$

In summary to prove some language L is not regular (using the pumping Lemma).

1. Assume for sake of contradiction L is regular. (Wo are given any M with P states, $P \geq 0$)
(2.) Based on L, and P we choose some w st (1) $|w| \geqq P$
(2) (typically) $w \in L$
2. Now w is divided into 3 pieces $w=x y z$ such that $|x y| \leq p, \quad M \mid>0$
(4.) Show we can always puny y w to set a $w^{\prime}=x y^{i} z$ (we pick i) and we reed to show w' (typical case)
