Lecture 5

Announcements:

- HW1 OUT. New due date: Tues Oct 3, 11:59 pm
- My office hours this week: Fri 6-7 pm (by zoom) SUN 8-9 pm

Recap from last class

Formal Definition of a Regular Expression
Let
$$\Sigma$$
 be a finite alphabet
R is a regular expression over Σ if:
(1) $R = a$ for some $a \in \Sigma$ base cases
(2) $R = E$ base cases
(3) $R = \Phi$
(4) $R = R_1 + R_2$ where R_1, R_2 are regular
 $e \times pressions$ over Ξ
(5) $R = R_1 \cdot R_2$ where R_1, R_2 are regular
 $e \times pressions$ over Ξ
(6) $R = (R_1)^{*}$ where R_1 is a regular
 $e \times pression over \Xi$

* Note: in book + 15 V (unión) · is o (concasenatión)

Proof has 2 directions:

(i) L has a regular expression -> L has an NFA (and therefore L has a DFA so L is regular)

(i) L has a regular expression -> L has an NFA Proof by induction on length of regular expression for L. 0,1 - (9.54 Base cases : $L=\phi$ $\rightarrow (q_1) \sim \circ_1$ -@ L=E L= {a}, a E =

a. 6

(i) L'has a regular expression -> L'has an NFA Proof by induction on length of regular expression for L. Inductive step: IND hyp: For any L described by a regular expression involving at most K operations *, t, . , L has an NFA show: any L described by regespression with K operations has an NFA

(i) L'has a regular expression -> L'has an NFA

Inductive step:
IND hyp: For any L described by a regular expression involving
at most K operations
$$*, +, \cdot, \cdot, L$$
 has an NFA
show: any L described by regenpression with K operations
has an NFA
3 cases: (i) $L = (L_1)^{*}$ where L_1, L_2 described by
(ii) $L = L_1 + L_2$ is operations
(iii) $L = L_1 + L_2$ is operations
(iii) $L = L_1 - L_2$
(iii) $L = L_1 - L_2$

(ii) L has a DFA (or NFA) -> L has a regular expression

* Our algorithm different (and easier I think) than Sipser. See supplemental material for more into on the algorithm we give today.

- · New start state s with E-transition to original start state
- · New single accept state f with E-transitions from old accept states to f

- New start state s with E-transition to original start state
- · New single accept state f with E-transitions from old accept states to f

- · New start state s with E-transition to original start state
- · New single accept state f with E-transitions from old accept states to f

• Consider all pairs of edges $(q \rightarrow q_1 \ q_1 \rightarrow q')$, $q_1q' \neq q_1$ $q_0 \rightarrow q_1$, $q_1 \rightarrow q_2$: $1 \ 1^* \ 0$ $q_0 \rightarrow q_1$, $q_1 \rightarrow q_2$: $1 \ 1^* \ 0$ $q_2 \rightarrow q_1$, $q_1 \rightarrow f$: $(0+1) \ 1^* \ 0$ $q_2 \rightarrow q_1$, $q_1 \rightarrow q_2$: $(0+1) \ 1^* \ 0$

· Remove 21

For all pairs q→q1 q3→q2 udd the corresponding regular expression to edge q→q2

- · New start state s with E-transition to original start state
- · New single accept state f with E-transitions from old accept states to f

Step 2 (remove
$$q_1$$
)
• Consider all pairs of edges $(q \rightarrow q_1 \ q_1 \rightarrow q')$, $q_1q' \neq q_1$
 $q_0 \rightarrow q_1, \ q_1 \rightarrow q_2 : 1 t^* \bigcirc$
 $q_0 \rightarrow q_1, \ q_1 \rightarrow q_2 : 1 t^* \bigcirc$
 $q_0 \rightarrow q_1, \ q_1 \rightarrow q_2 : 1 t^* \bigcirc$
 $q_0 \rightarrow q_1, \ q_1 \rightarrow q_2 : 1 t^* \bigcirc$
 $q_0 \rightarrow q_1, \ q_1 \rightarrow q_2 : 1 t^* \bigcirc$
 $q_0 \rightarrow q_1, \ q_1 \rightarrow q_2 : 1 t^* \bigcirc$
 $q_0 \rightarrow q_1, \ q_1 \rightarrow q_2 : 1 t^* \bigcirc$

· Remove 21.

• For all pairs $q \rightarrow q_1 \quad q_1 \rightarrow q'$ under the corresponding regular expression to edge $q \rightarrow q'$

step 3 (remove
$$q_2$$
)
 $q_3 \rightarrow q_2 \quad q_1 \rightarrow f: (10)((0+1)1^*0)^*(0+1)1^*$

- · New start state s with E-transition to original start state
- · New single accept state f with E-transitions from old accept states to f

Step 2 (remove
$$q_1$$
)
• Consider all pairs of edges $(q \rightarrow q_1 \ q_1 \rightarrow q')$, $q_1q' \neq q_1$
 $q_0 \rightarrow q_1 \ q_1 \rightarrow q_2 : 11^* O$
 $q_0 \rightarrow q_1 \ q_1 \rightarrow q_1 : 11^*$
 $q_2 \rightarrow q_1 \ q_1 \rightarrow q_2 : (O+1)1^*$
 $q_2 \rightarrow q_1 \ q_1 \rightarrow q_2 : (O+1)1^*$
• Remove q_1 .
• For all pairs $q \rightarrow q_1 \ q_1 \rightarrow q'$ add the corresponding regular expression to edge $q \rightarrow q'$

step 3 (remove
$$g_2$$
)
 $g_3 \rightarrow g_2 \ g_1 \rightarrow f: \ |i^{*}0((0+i)1^{*}0))^{*}(0+i)1^{*}$

Step 4 (remove 2.)
$$s \rightarrow q_{0} \rightarrow f$$
 $O^{*}(11^{*} + 11^{*}O((0+1)1^{*}O)^{*}(0+1)1^{*})$

01 = 021

z. NFAs, and equivalence with DFAs

z. NFAs, and equivalence with DFAs

3. Closure Properties of Regular Languages

4. Regular Expressions and Equivalence with Regular Languages

Next: 5. Proving that a language is Not regular: Pumping Lemma

6. DFA state minimization

$$A = \{ 0^{n} 1^{n} | n \ge 0 \}$$

$$B = \{ W \in \{0,1\}^{k} | W \text{ has equal number of 0's + 1's} \}$$

$$C = \{ W \in \{0,1\}^{k} | W \text{ has equal number of occurrences} of `01' and `10' \}$$

$$L = \{0^{n} 1^{n} | n \ge 0\}$$

Tricky since we need to show that every DFA M has to make a mistake with respect to L (Show: either EWEL Not accepted by M, or EW accepted) by M and Not in L

And there are an infinite number of DFAS !

$$L = \{0^{n} 1^{n} | n \ge 0\}$$

- Not enough to show that the obvious or natural DEAS don't accept L
- · Avoid a common trap:

L may be defined by some property. But we can't assume that a DFA for L Needs to be able to recognize/compute that property

Example: Lz = {we so,1} (the number of occurrences of 'or' in w is equal to the number of occurrences of '10' 3

<u>Proof by contradiction</u>: Assume that L is regular, so some DFA, M, accepts A. Find some property that all regular Languages have that L doesn't have to get a contradiction. WARMUP: A language L'is finite if $\exists c \ge 0$ such that $|L| \le c$ Let's show: $L = \{0^n\}^n | n \ge 0\}$ is not a finite Language.

Property: A language L' is length-bounded if 3 k=0 such that every we L' has length = k

<u>Claim</u> All finite languages are length-bounded.

Proof that L= {on 1 (n>03 is Not finite:

- · Assume for sake of contradiction that L is finite
- By claim, IK=0 such that every we L has length ≤K.
- But $W = O^{K}1^{K} \in L$ and [W] > K. $L' \neq L$. So L is Not finite

Now we will show that $L = \{0^n | n \ge 0\}$ is Not regular Main tool: Pumping Lemma.

For example, suppose M has K states. Then for every $W \in \mathbb{Z}^*$ of length $= \mathbb{K} (|W| \ge \mathbb{K})$ M will loop on W.

For example, suppose M has K states. Then for every $W \in \mathbb{Z}^*$ of length = k ($|W| \ge k$) M will loop on W.

Property: For any DFA M, JK=0 such that for every WEZ*, W=K, M on W repeats a state. That is, WW, IWI=K, J a state q* satisfying: We can write W=XYZ, IYI=0, IXYI=K M is in state q* after reading X, and again is in state q* after reading XY Therefore for every i=0, the string W=XYZ behaves the same as W on M. That is: M accepts W' If and only if M accepts W

Example

 $W = 1011011 \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{2} Q_{1} Q_{2} Q_{4} \\ \chi \end{array} \qquad \begin{array}{c} Y \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{2} Q_{4} Q_{2} Q_{4} \\ \chi \end{array} \qquad \begin{array}{c} Y \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{2} Q_{4} Q_{3} Q_{0} Q_{1} \\ \chi \end{array} \qquad \begin{array}{c} Y \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{2} Q_{4} Q_{3} Q_{0} Q_{1} \\ \chi \end{array} \qquad \begin{array}{c} Y \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{2} Q_{4} Q_{3} Q_{0} Q_{1} \\ \chi \end{array} \qquad \begin{array}{c} Y \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{2} Q_{4} Q_{3} Q_{0} Q_{1} \\ \chi \end{array} \qquad \begin{array}{c} Y \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{3} Q_{0} Q_{1} \\ \chi \end{array} \qquad \begin{array}{c} Y \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{3} Q_{0} Q_{1} \\ \chi \end{array} \qquad \begin{array}{c} Y \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{2} Q_{4} Q_{3} Q_{0} Q_{1} \\ \chi \end{array} \qquad \begin{array}{c} Y \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{2} Q_{4} Q_{3} Q_{0} Q_{1} \\ \chi \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{2} Q_{4} Q_{3} Q_{0} Q_{1} \\ \chi \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{2} Q_{4} Q_{3} Q_{0} Q_{1} \\ \chi \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{5} Q_{4} Q_{2} Q_{4} Q_{3} Q_{0} Q_{1} \\ \chi \end{array} \qquad \begin{array}{c} Q_{0} Q_{1} Q_{5} Q_{4} Q_{5} Q_{4} Q_{5} Q_{4} Q_{5} Q_{4} Q_{5} Q_{5}$

M: K=6

Property: For any DFA M, ∃K≥D such that for every west, where , where , where , where , where , a state a state. That is, Ww, where , ∃ a state of satisfying: We can write W=XYZ, 191>0 such that M is in stude q* after reading x, and again is in state q* after reading xy Therefore for every i=0, the string w'= XyiZ behaves the same as w on M. That is: Maccepts w' if and only if M accepts w Proof that L= {on in (n > 0] is not regular: Assume that L is regular + Let M be a DFA accepting L, where M has K states Consider the input $W = 0^{K} 1^{K}$. since $W \in L$, M should accept W (we reach,) (contradiction) By above property, we can write W = XYZ, |Y| = 0, $|XY| \leq K$ such that $\forall i \geq 0$ XYZ is also accepted by M (since M accepts W) Since $|XY| \leq K$, $|Y| \geq 0$, W = XYZ = 0 0 0^{K-a-b} 1^K b > 0 7 Then the string $xy^2 z = 0^{\alpha} 0^{2b} 0^{\kappa-\alpha+1} 1^{\kappa} = 0^{\kappa+b} 1^{\kappa}$ is accepted by M But $xy^2 z x L$. contradiction. S. Lis Not regular.

Proof that L= {on in (n > 0] is not regular, contil

