
Lecture

Announcements :

• HWI out
.

New due date : Tues Oct 3 , 11:59pm

• My office hours this week : Fri 6-7 pm (By zoom)
sun 8- 9 pm

Recap from last class

> we showed regular Languages are closed under

operations t, • , *

→ Defined regular expressions ,
and the

language associated with a regular expression

Closure Properties of Regular Languages

1
.
If L a- E* -

is regular, then I
= { West (w ☒ L} -

is also regular

z.

If L -

is regular, then L* = { w l w=Y - vi. . .ve/Y,..,YcC-L }
- is regular

3.. If L
,

and Lz are regular, then 4th
,
:{w/ wet , or Welz}

is regular

4 .

It L
,

and Lz are regular, then 4. Lz={w/ in can. be written
as UV

where UEL
,

and ✓ c- Lz }

Formal Definition of a Regular Expression

Let E be a finite alphabet

R is a regular expression over s if :

① R = a for some at E.

} base cases

② R ' e

③ R =P

④ R=R,tR,
where R

, ,
R
,
are regular

expressions over E } inductor⑤ R = R
,
- Rz where R

, ,

R
,
are regular

cases

expressions on E

⑥ R - 42,7 where R
,

is a regular

expression on E

* Note : in book t - is V Canion)
• is 0 (concatenation)

More Examples

" """" """"
* iiñii

2. *•Ht•(0tD* & CRI ME
4-

3. 1*-0 - 1-
*

•

-%•[
☒ %

Rt ¥+1
,
o l

l

o

/ \
,

Theorem Let E be a finite alphabet .

The class of languages over { that are regular
is equal to the class of languages that are described

by regular expressions

Pioof has 2 directions :O

4) L has a regular expression → L has an NFA

(and therefore L has a DFA so L is regular)

(ii) L has a DEA Cor NEA) → L has a regular
expression

Theorem Let E be a finite alphabet .

The class of languages over { that are regular
is equal to the class of languages that are described

by regular expressions

Pioof has 2 directions :O

4) L has a regular expression → L has an NFA

(proof uses closure properties !)

(ii) L has a DEA Cor NEA) → L has a regular
expression(harder)

4) L has a regular expression → L has an NFA

Proof by induction on length of regular expression for L .

→0%791Base cases : 1- =p

L=c →④É④I°, I

L= { a]
,

a c- E →④→⑧
÷

4) L has a regular expression → L has an NFA

Proof by induction on length of regular expression for L .

Inductive step :

IND hyp : For any L
described by a regular expression involving

at most K operations * , t , • ,
L has an NFA

show : any L described by reg expression with K operations
has an NEA

4) L has a regular expression → L has an NFA

Inductive step :

IND hyp : For any L
described by a regular expression involving

at most K operations * , t , • ,
L has an NFA

show : any L described by reg expression with K operations
has an NFA

3 cases : (;) 2=4,)* where L
, , Lz described by

regular expressions
(Ii) L= Lit Lz

using ← k operations
liii) <=L

,

• Lz

it follows by closure property ② }
see first slide

Cii) "
"

" " ③ from this lecture

Liii) " " " "

④

Ci) L has a DEA Cor NEA) → L has a regular
expression

To prove this direction
we will give an atgonthm

that takes as input a DFA or NFA M

produces a regular expression such that the

language accepted by M corresponds to the regular expression

☒ Our algorithm different
land easier I think)

than Sipser. See supplemental material for more
info on the algorithm we gie today .

C-xanple-1.ae. Constructing Regular Expression
from an NEA

20 A1
⇐ From

%
↳

9 →÷ 92 Lecture 1 !

step
• New start state s with E-transition to original start state
• New single accept state f with E- transitions from old accept states to f-

Do 21

go
↳

9
, →÷o 92

te E)
5 f

ni ni
step

go
↳

91 T¥ 92

step at
1-

q , -¥ %
• New start state s with E-transition to original start state %

• New single accept state f with E- transitions from old accept states to f- ET
.

.

Ed
5 f

ni ni
step

go
↳

9 T¥ 92

slept nine
1-

q , -¥%• New start state s with E-transition to original start state %

• New single accept state f with E- transitions from old accept states to f ET ¥i.

stepz (remove q
,

)
01-111*0

• consider all pairs of edges @→E, q→q
')

,
q, q

'
* q
,

Ñ
→ qz

%
qo→q , q

,

→ 9, : 11*0

%→E, 9
,

→ f : 11
"

EEE ,
E.→ f : cot ,)s* ,

#E
g

qz→q, 9
,

→gz : 101-1750
• Remove 91 .

• For all pairs q→q, 9,→q
"

add the corresponding regular expression to edge q→q
'

Do 21
step

go
↳

9 T¥ 92

20

step %
1- ^É_¥%

• New start state s with E-transition to original start state ET et
• New single accept state f with E- transitions from old accept states to f

's f

stepz (remove q,)
0+111*0

• Consider all pairs of edges (q→q, q→q
')

,
q, q

'
q
, Ñ% → on

qo→q, q
,

→ 9, : 11*0

%→E, 9
,

→ f : 11
"

%¥¥.#

EEE, ,q→f : 6+138
EYE,

9
,

→gz : 101-1750

• Remove 91 .

• For all pairs q→q, 9,→q
"

add the corresponding regular expression to edge q→q
'

steps (remove qz) GO

↳→ qz qz→f : 11*0110+111*0 10+1)1*

g.go 010+171*0710+1)1*

s f

ni ni
step

go
↳

9 T¥ 92

step →¥%
• New start state s with E-transition to original start state ¥⑤
• New single accept state f with E- transitions from old accept states to f

step2_ (remove g)
pylon)¥o

• consider all pairs of edges @→ E, q→É) , Esq
'
E
, ¥? → qz

qo→q, q
,

→ 9, : 11*0

%→q, 9
,

→ f : 11
" g

,

#E

ETE,

E
,
,→f : 6+138

qz→E, 9
,

→gz : 101-1750
• Remove 91 .

• For all pairs q→q, 9,→q
"

add the corresponding regular expression to edges q→q'

Ro

gq%t*0((01-17170)*(0+1)steps (remove qz)

qo→qz {if : 11*0 ((Otc) 1*011*101-1)1*
s

°

f

Steph (remove %)

s→qo→f 0*111*+11*0401- 1) 1*01*(0+1715) S- f
☒ (11*+11*040+1) 1*03*(0+1715)

NFA

⇒0*0*00
01 = OEI

ExampK_I
→q÷T÷?>
-

☒- b

go.ge#b?9zbTJyE3-Eaf
s

☒ q→qz→q
,
: ba

Remove qz q→q→q, :
bb

,
#qoÉqa 9s→ f

qo→q→q :
ba U ba

%→Ez→q
,
:
bb

☒ gzqobbt-atb.ba#atbbgq,.-g .

Remove q %→E,→E, :(atbalba)*(atbb)

JStp-s-ggbbt-a.ba?Tba*atbbfRemove 90,9]

Recap so far

1. DFAS and Regular Languages

2. NEAS ,

and equivalence with DF As

3. Closure Properties Of Regular Languages

4. Regular Expressions
and Equivalence With Regular Languages

Recap so far

1. DFAS and Regular Languages

2. NEAS ,

and equivalence with DF As

3. Closure Properties Of Regular Languages

4. Regular Expressions
and Equivalence With Regular Languages

Nates
. Proving that a language

is Not regular :

Pumping Lemma

6 .
DFA state minimization

Non regular Languages & Pumping Lemma

Warmup : Which of these languages is regular ?

A = { 0^1
" l n > o }

B = {we {0,13$ I w has equal number of 0's & 1 's}

c. = { we {0,13*1 w has equal number of occurrences

of '01
'

and '
10
'

}

Non regular Languages & Pumping Lemma

Warmup : Which of these languages is regular ?

L
,

= {we {0,13$ 1 the number of 0's in W is

equal to the number of 1 's in w}

Lz = { we {0,13*1 the number of occurrences of
'
ol
'
in W is equal to the number

of occurrences of
'
10
'

}

Lower Bounds : How to prove that a Language
is not regular ?

L = { 0^1^1 neo }

Tricky since we need to show that every DFA M

has to make a mistake
with respect to L

(show : either 7-we L Not accepted by M ,
or 7W accepted)

by M and Not in L

And there are an infinite number of DFAS !

Lower Bounds : How to prove that a Language
is not regular ?

L = { 0^1^1 neo }

• Not enough to show that the obvious or natural

DEA s don't a.ccget L

• Avoid a common trap :

L may be defined by some property .

But we can't assume that a DEA for L Needs

to be able to recognize/compute that property

EBL: Lz = { we {0,13*1 the number of occurrences
"

of ' ol ' in W

is equal to the number of occurrences of
'
10
'

3

Lower Bounds : How to prove that a Language
is not regular ?

a- all Languages
over {0,13*

÷
regular languages↳cnn.is

"

*

Languages

proof by contradiction : Assume
that L is regular,

so some DFA , M , accepts A •
Find some property that all regular Languages have that
L doesn't have to get a contradiction .

-

WARI
>
: A Language L

'

is finite if 3C>0 such that t.LI Ec

-

Lets show : L = { 0^1^1 n so} is not a finite Language .

IKty: A language L
'

is ¥-bÉd if 1- Keo
'

such that

every we L
'
has length a- K

Claim All finite languages are length
-bounded .

Proof that L
= {07

"

/ n> 03 is Not finite :
L
.

• Assume for sake of contradiction that L is finite

• By Clavin , 3-1<=0 such
that every we L has length sk .

• But w= ok 1k c- L and lwl > K . •
: L' =\ L

.

So L is Not finite
-

Now we will show that 2={07^1^2-0} is Not regular
Main tool : P⇒g

Lemm-a.keyI-de.ae
Every DEA has a finite number of states .

Therefore for any DFA M (allegedly accepting language L)
for guy sufficiently large WEE , M 's computation
on w will Loop .

For example , suppose M has K states
.

Then for every
we E* of length 3k awl >K)

,

M will loop on W .

I

Keytdea Every DEA has a finite number of states .

Therefore for any DFA M (allegedly accepting language L)
for guy sufficiently large WEE , M 's computation
on w will Loop .

For example , suppose M has K states
.

Then for every
we E* of length 3k awl>K)

,

M will loop on W .

Exampte M :
M has 1<=6 states

so any string w of length -6 →% 19
°

will Loop (repeat a state) I *it
w = 1011011 Go 9,9s Ey 929 , 9294

↳

¥-94 .

-

W = 1 11 00 I 90 Oh
, 92 hey 93 909

,

W= 1001111 Go E
, 9g 94 Ez Ey Ez

Proof that L = {0^1
"

In > o } is Not regular

Property : For any DEA M , 71<=0 such that for every

W c- E*
,
lwl - K

,
M on w repeats a state .

That is
,
VW
,
twink

,
F a state q* satisfying :

we can write W= Xyz , 141>0 , Kyle
K satisfying :

M is in state q* after reading ☒ ,
and again is in

state q* after reading xy

Therefore for every i> 0 , the string
W' = ✗yiz behaves the

same as w on M .

That is :

M accepts w
' if and only if M accepts w

Property : For any DEA M
,
71<=0 such that for every w c- E*

,
lwl - K

,

M on w repeats a state . That is , VW
,
twink

,
F a state q* satisfying :

we can write W= Xyz , 141>0, 1×41
'

← K

M is in state q* after reading ☒ ,
and again is in state q* after reading ✗

y

Therefore for every i > 0 , the string
w

'
-_ ✗yiz behaves the

same as w on M.

That is : µ accepts w
' if and only if M accepts W

Examples
W = 1011011 Go 9, 9s Ey 929 9294
YIM: 1<=6

→%

'

° " ' " " '

÷i9%§
-2

*it
§¥ 94

.

.

W= 10011 I 1 Go E
, 9g Ey Ez Ey Ez

*I

Property : For any DEA M
,
71<>-0 such that for every w c- E*

,
int - K

,

M on w repeats a state . That is , VW
,
twink

,
F a state q* satisfying :

we can write W= Xyz , Iyl
>o such that

,

M is in state q* after reading ☒ ,
and again is in state q* after reading xy

Therefore for every i > 0 , the string
W' = ✗yiz behaves the

same as w on M.

That is : µ accepts w
' if and only if M accepts W

Proof that L={ on il n > o] is not regular :

Assume that L is regular & Let M be a DFA accepting L , where M has K states

consider the input w = ok 1K
.

Since WE L
,

M should accept W (we reach

By above property , we can write iv.
✗ yz , µ , > o, my ,⇐ ,

f¥nY÷ition)
such that Vito xy

:
-2 is also accepted by M (since Maccgltsw)

since lxyl ← K, 141030, W= ✗ y 2- = oaob ok
- a - b

1
"

b > ☐

t.TT
Then the string ✗ yaz = oajbok-a.by" = 01.4-b11' is accepted by M

but xy't-4L . Contradiction
.
5. Lts Not regular.

Proof that L={ on in / n > o] is not regular, cont'd

°

For example :
→%§i⇒②M : I ¥:X

↳⇒ 94 :

our string W= Ok 1k = 0616 = o o o o o o l l l l l l

M on w accepts : go E , Es Es- Es Es Es Ey

F-É
y

Mon ✗Yz : also accepts ,
but xy2z&L

in

"

pumped
"

string

