Lecture 5

Announcements:

- HW1 out. New due date: Tues Oct 3, 11:59 pm
- My office hours this week: Fri 6-7 pm (by zoom)
Sun $8-9 \mathrm{pm}$ SUN $8-9$ pm

Recap from last class
\rightarrow we showed regular languages are closed under operations t,,$*$
\rightarrow Defined regular expressions, and the
Language associcited with a regular expression

Closure Properties of Regular Languages
(1.) If $L \leq \sum^{*}$ is regular, then $L=\left\{w \in \varepsilon^{*}(w \notin L\}\right.$ is also regular
(2.) If L is regular, then $L^{*}=\left\{w\left(w=v_{1} \cdot v_{2} \cdot \ldots \cdot v_{k}\left(v_{1}, \ldots, v_{k} \in L\right\}\right.\right.$ is regular
(3.) $56 L_{1}$ and L_{2} are regular, then $L_{1}+L_{2}=\left\{w / w \in L_{1}\right.$ or $\left.w \in L_{2}\right\}$
is regular
(4.) It L_{1} and L_{2} are regular, then $L_{1} \cdot L_{2}=\{\omega \mid$ w can be whiten where $u \in L$, and $\left.v \in L_{2}\right\}$

Formal Definition of a Regular Expression
Let ε be a finite alphabet
R is a regular expression over Σ if:
$\begin{array}{ll}\text { (1) } R=a & \text { for some } a \in \Sigma \\ \text { (2) } R=\varepsilon \\ R=\phi\end{array} \quad$ base cases
(3) $R=\phi$
(4) $R=R_{1}+R_{2}$ where R_{1}, R_{2} are regular expressions over Σ
(5) $R=R_{1} \cdot R_{2}$ where R_{1}, R_{2} are regular expressions over ε
in ductrie cases
(6) $R=\left(R_{1}\right)^{*}$ where R_{1} is a regular expression over Σ

$$
\text { N Note: in book } t \text { is } U \begin{aligned}
& \text { (union) } \\
& \text { is }
\end{aligned}
$$

More Examples

1. $((0+1) \cdot(0+1) \cdot(0+1))^{*} \Rightarrow$
2. $(0+1)^{*} \cdot 111 \cdot(0+1)^{*}$
3. $1^{*} \cdot 0 \cdot 1^{*}$

Theorem Let Σ be a finite alphabet.
The class of languages over \sum that are regular is equal to the class of languages that are descried by regular expressions

Proof has 2 directions:
(i) L has a regular expression $\rightarrow L$ has an NFA (and therefore L has a DFA so L is regular)
(ii) L has a DFA (or NEA) $\rightarrow L$ has a regular expression

Theorem Let Σ be a finite alphabet.
The class of languages over \sum that are regular is equal to the class of languages that are descried by regular expressions

Proof has 2 directions:
(i) L has a regular expression $\rightarrow L$ has an NFA (proof uses closure properties!)
(ii) L has a DFA (or NFA) $\rightarrow L$ has a regular (harder) expression
(i) L has a regular expression $\rightarrow L$ has an NFA

Proof by induction on length of regular expression for L.
Base cases: $L=\phi$

$$
\begin{align*}
& L=\varepsilon \tag{90}\\
& L=\{a\}, a \in \Sigma
\end{align*}
$$

(i) L has a regular expression $\rightarrow L$ has an NFA

Proof by induction on length of regular expression for L.
Inductive step:
IWD hyp: For any L described by a regular expression involving at most K operations $*,+$, , L has an NFA
show: any L described by reg expression with K operations has an NEA
(i) L has a regular expression $\rightarrow L$ has an NFA

Inductive step:
IWD hyp: For any L described by a regular expression involving at most K operations $*,+, \cdots$, L has an NFA

Show: any L described by reg expression with K operations has an NEA

3 cases: (i) $L=\left(L_{1}\right)^{*}$
(ii) $L=L_{1}+L_{2}$
(iii) $L=L_{1} \cdot L_{2}$
(i) follows by closure property (2)
(i)
(iii)
(4)
where L_{1}, L_{2} dercubed by regular expressions using $\leq k$ operations
\{ see first slide from this lecture
(ii) L has a OFA (or NFA) $\rightarrow L$ has a regular expression

To prove this direction we will give an algonthm that takes as input a DFA or NTA M produces a regular expression such that the Language accepted by M corresponds to the regular expression

* Our algorithm different (and easier I thinic) than Sipser. See supplemental material for more into on the algorithm we give today.

Example 1 : constructing Regular Expression from an NEA

From Lecture 1 !

Step 1

- New start state s with E-transition to original start state
- New single accept state f with E-transitions from old accept states to f

Step 0

Step 1

- New start state s with ε-transition to original start state
- New single accept state f with E-transitions from old accept states to f

Step 0

step 1

- New start state s with ε-transition to original start state
- New single accept state f with ε-transitions from old accept states to f

Step 2 (remove q_{1})

- Consider all pairs of edges $\left(q \rightarrow q_{1} \quad q_{1} \rightarrow q^{\prime}\right), q_{1} q^{\prime} \neq q_{1}$

$$
\begin{array}{ll}
q_{0} \rightarrow q_{1} & q_{1} \rightarrow q_{2}: 11^{*} 0 \\
q_{0} \rightarrow q_{1} & q_{1} \rightarrow f: 11^{*} \\
q_{2} \rightarrow q_{1} & q_{1} \rightarrow f:(0+1) 1^{*} \\
q_{2} \rightarrow q_{1} & q_{1} \rightarrow q_{2}:(0 f 1) 1^{*} 0
\end{array}
$$

- Remove q_{1}.
- For all pairs $q \rightarrow q_{1} \quad q_{1} \rightarrow q^{\prime}$ cad the corresponding regular expression to edge $q \rightarrow q^{\prime}$

Step 0

step 1

- New start state s with ε-transition to original start state
- New single accept state f with ε-transitions from old accept states to f

Step 2 (remove q_{1})

- Consider all pairs of edges $\left(q \rightarrow q_{1}, q_{1} \rightarrow q^{\prime}\right), q_{1} q^{\prime} \neq q_{1}$

$$
\begin{array}{ll}
q_{0} \rightarrow q_{1} & q_{1} \rightarrow q_{2}: 11^{*} 0 \\
q_{0} \rightarrow q_{1} & q_{1} \rightarrow f: 11^{*} \\
q_{2} \rightarrow q_{1} & q_{1} \rightarrow f:(0+1) 1^{*} \\
q_{2} \rightarrow q_{1} & q_{1} \rightarrow q_{2}:(0+1) 1^{*} 0
\end{array}
$$

- Remove q_{1}.
- For all pairs $q \rightarrow q_{1} \quad q_{1} \rightarrow q^{\prime}$ cad the corresponding regular expression to edge $q \rightarrow q^{\prime}$

Step 3 (remove q_{2})

$$
\left.q_{0} \rightarrow q_{2} \quad q_{2} \rightarrow f: \quad 11^{*} 0\left((0+1) 1^{*} 0\right)\right)^{*}(0+1) 1^{*}
$$

Step 0

step 1

- New start state s with ε-transition to original start state
- New single accept state f with E-transitions from old accept states to f

Step 2 (remove q_{1})

- Consider all pairs of edges $\left(q \rightarrow q_{1}, q_{1} \rightarrow q^{\prime}\right), q_{1} q^{\prime} \neq q_{1}$

$$
\begin{array}{ll}
q_{0} \rightarrow q_{1} & q_{1} \rightarrow q_{2}: 11^{*} 0 \\
q_{0} \rightarrow q_{1} & q_{1} \rightarrow f: 11^{*} \\
q_{2} \rightarrow \varepsilon_{1} & q_{11} \rightarrow f:(0+1) 1^{*} \\
q_{2} \rightarrow q_{1} & q_{1} \rightarrow q_{2}:(0+1) 1^{*} 0
\end{array}
$$

- Remove q_{1}
- For all pairs $q \rightarrow q_{1} \quad q_{1} \rightarrow q^{\prime}$ add the corresponding regular expression to edge $q \rightarrow q^{\prime}$

Step 3 (remove q_{2})

$$
\left.q_{0} \rightarrow q_{2} \quad q_{2} \rightarrow f: \quad 11^{*} 0\left((0+1) 1^{*} 0\right)\right)^{*}(0+1) 1^{*}
$$

Step 4 (remove q_{0})

$$
s \rightarrow q_{0} \rightarrow f \quad 0^{*}\left(11^{*}+11^{*} O\left((0+1) 1^{*} 0\right)^{*}(0+1) 1^{*}\right)
$$

(5)

NFA

Example 2

Step 1

Step 2	$q_{1} \rightarrow q_{2} \rightarrow q_{1}:$ Remove q_{2} $q_{1} \rightarrow q_{2} \rightarrow q_{3}:$ ba
	$q_{0} \rightarrow q_{2} \rightarrow q_{1}:$
$q_{0} \rightarrow q_{2} \rightarrow q_{3}:$	bb

Step 3
Remove q_{1}

$$
q_{0} \rightarrow q_{1} \rightarrow q_{3}:(a+b a)(b a)^{*}(a+b b)
$$

Steps 4-5
(5) $\xrightarrow{b b+(a+b a)(b a)^{*}(a+b b)}=$

Recap so far

1. DFAs and Regular Languages
2. NEAs, and equivalence with $D F A_{s}$
3. Closure Properties of Regular Languages
4. Regular Expressions and Equivalence with Regular Languages

Recap so far

1. DFAs and Regular Languages
2. NEAs, and equivalence with $D F A_{s}$
3. Closure Properties of Regular Languages
4. Regular Expressions and Equivalence with Regular Languages

Next:
5. Proving that a language is not regular: Pumping Lemma
6. DFA state minimization

Nonregular Languages \& Pumping Lemma

Warmup: Which of these Languages is regular?

$$
A=\left\{0^{n} 1^{n} \quad(n \geqslant 0\}\right.
$$

$B=\left\{W \in\{0,1\}^{*} \quad 1 W\right.$ has equal number of 0 's +1 ' $\left.s\right\}$
$C=\left\{w \in\{0,1\}^{*} \mid w\right.$ has equal number of occurrences of 'O1' and ' 10 ' $\}$

Nonregular Languages a Pumping Lemma

Warmup: Which of these languages is regular?
$L_{1}=\left\{w \in\{0,1\}^{*}\right.$ (the number of o's in w is equal to the number of 1 's in $w\}$
$L_{2}=\left\{w \in\{0,1\}^{*}\right.$ (the number of occurrences of 'OI' in W is equal to the number of occurrences of ' 10 ' $\}$

Lower Bounds: How to prove that a Language is not regular?

$$
L=\left\{0^{n} 1^{n} \mid n \geqslant 0\right\}
$$

Tricky since we Need to show that every DFA M has to make a mistake with respect to L
(Show: either $\exists w \in L$ Not accepted by M, or $\exists w$ accepted)
by M and not in L
And there are an infinite number of DFAS!

Lower Bounds: How to prove that a Language is not regular?

$$
L=\left\{0^{n} 1^{n} \mid n \geqslant 0\right\}
$$

- Not enough to show that the obvious or natural DEA dort accept L
- Avoid a common trap:

L may be defined by some property.
But we cant resume that a DFA for L Needs to be able to recognize/compute that property
Example: $L_{2}=\left\{w \in\{0,1\}^{*} \mid\right.$ the number of occurrences of ' 01 ' in w is equal to the number of occurrences of '10' 3

Lower Bounds: How to prove that a Language is not regular?

Proof by contradiction: Assume that L is regular, so some DFA, M, accepts A.
Find some property that all regular Languages have that L doesrit have to get a contradiction.

WARMUP: A Language L 'is finite if $\exists c \geqslant 0$ such that $\mid L I \leq c$
Let's show: $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not a finite Language.

Property: A language L^{\prime} is length-bounded if $\exists k \geqslant 0$ such that every $w \in L$ has length $\leq K$

Claim All finite languages are length-bounded.

Proof that $L=\left\{0^{n} 1^{n}(n \geqslant 0\}\right.$ is Not finite:

- Assume for sake of contradiction that L is finite
- By claim, $\exists k \geqslant 0$ such that every $w \in L$ has length $\leqslant k$.
- But $w=0^{k} 1^{k} \in L$ and $|w|>K$. $\therefore L^{\prime} \neq L$. So L is not finite

Now we will show that $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is Not regular Main tool: Pumping Lemma.

Key Idea Every DFA has a finite number of states.
Therefore for any DFA M (allegedly accepting language L) for any sufficiently large $w \in \Sigma^{*}, M^{\prime}$ s computation on w will Loop.

For example, suppose M has K states. Then for every $w \in \sum^{*}$ of length $\geq k \quad(|w| \geq k), M$ will loop on w.

Key Idea Every DFA has a finite number of states.
Therefore for any DFA M (allegedly accepting Language L) for any sufficiently large $w \in \mathcal{Z}^{*}, M^{\prime}$ s computation on w will Loop.

For example, suppose M has K states. Then for every $w \in \sum^{*}$ of length $\geq k \quad(|w| \geq k), M$ will loop on w.

Example
M has $K=6$ states
So any string w of length $\geqslant 6$
will loop (repeat a state)

$$
\begin{array}{ll}
w=1011011 & q_{0} q_{1} q_{5} q_{4} q_{2} q_{1} q_{2} q_{4} \\
w=111001 & q_{0} q_{1} q_{2} q_{4} q_{3} q_{0} q_{1} \\
w=1001111 & q_{0} q_{1} q_{5} q_{4} q_{2} q_{4} q_{2}
\end{array}
$$

Proof that $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular

Property: For any DEA $M, \exists K \geqslant 0$ such that for every $w \in \Sigma^{*},(w) \geq k, M$ on w repeats a state. That is, $\forall w,|w| \geq k, \exists$ a state q^{*} satisfying:
we can write $w=x y z,|y|>0,|x y| \leq k$ satisfying:
M is in state q^{*} after reading x, and again is in state q^{*} after reading $x y$
Therefore for every $i \geqslant 0$, the string $w^{\prime}=x y^{i} z$ behaves the same as w on M. That is:
M accepts w^{\prime} if and only if M accepts w

Property: For any DEA $M, \exists k \geqslant 0$ such that for every $w \in \Sigma^{*},|w| \geqslant k$, M on w repeats a state. That is, $\forall w,|w| \equiv k, \exists$ a state q^{*} satisfying:
we can write $w=x y z,|y|>0,|x y| \leqslant k$
M is in state q^{*} after reading x, and again is in state q^{*} after reading $x y$
Therefore for every $i \geqslant 0$, the string $w^{\prime}=x y^{i} z$ behaves the
same as w on M. That is: M accepts w^{\prime} if and only if M accepts w

Example

$$
M: \quad K=6
$$

$$
w=1011011 \quad \underbrace{q_{0}}_{x} \underbrace{q_{1} q_{5} q_{4} q_{2} q_{1}}_{y}, \frac{q_{2} q_{4}}{z}
$$

$$
w=111001{\underset{x}{k}}_{\frac{\varepsilon}{y}}^{q_{0} q_{1} q_{2} q_{4} q_{3} q_{0}, \underbrace{q_{1}}_{z}}
$$

$$
w=1001111 \quad q_{y}^{q_{0} q_{1} q_{5}} \underbrace{z}_{\frac{q_{4}}{} q_{2} q_{4}}
$$

Property: For any DEA $M, \exists k \geqslant 0$ such that for every $w \in \Sigma^{*},|w| \geqslant k$, M on w reseats a state. That is, $\forall w,|w| \geqslant k, \exists$ a state q^{*} satisfying:
we can write $W=x y z,|y|>0$ such that
M is in state q^{*} after reading x, and again is in state q^{*} after reading $x y$
Therefore for every $i \geqslant 0$, the string $w^{\prime}=x y^{i} z$ behaves the
same as w on M. That is: M accepts w^{\prime} if and only if M accepts w
Proof that $L=\left\{0^{n} 1^{n}(n \geqslant 0\}\right.$ is not regular:
Assume that L is regular * Let M be a DFA accepting L, where M has K states Consider the input $w=0^{k} 1^{k}$. since $w \in L$, M should accept w ($\begin{aligned} & \text { otheruse } \\ & \text { beach } \\ & \text { contradiction }\end{aligned}$. we reach,
By above property, we can write $w=x y z,|y|>0,|x y| \leqslant k$
such that $\forall i \geqslant 0 \quad x y^{i} z$ is also accepted by M (since M accepts)
Since $|x y| \leqslant k,|y|>0, w=x y z=\underbrace{0}_{x} \underbrace{0^{b}}_{y} \underbrace{0^{k-a-b} 1^{k}}_{z} \quad b>0$
Then the string $x y^{2} z=0^{a} O^{2 b} O^{k-a-b} 1^{k}=0^{k+b} 1^{k}$ is accepted by M Gut $x y^{2} z \& L$. contradiction. $\therefore L$ is not regular.

Proof that $L=\left\{0^{n} 1^{n}(n \geqslant 0\}\right.$ is not regular, conte

For example:

our string $w=0^{k} 1^{k}=0^{6} 1^{6}=0000000001111111$ M on w accepts: $\underbrace{q_{0} q_{1}}_{x} \underbrace{q_{5}}_{z} \underbrace{q_{5} q_{5} q_{5} q_{5} q_{4} q_{2} q_{4} q_{2} q_{4} q_{2}}_{z}$
Mon $\underbrace{x y^{z} z}$: also accepts, but $x y^{2} z \& L$ "pumped "string

