Lecture 4

Announcements:

- Office hours start this week! (check calender)
- HW1 OUT (check webpage). Due in 2 weeks
- Review Sessions (optional() start soon (see calendar) handout from all review sessions will be posted on webpage
- Extra supplementary material at bottom of webpage.

Closure Properties of Regular Languages

(1.) If $L \leq \sum^{*}$ is regular, then $L=\left\{w \in \varepsilon^{*}(w \in L\}\right.$ is also regular
(2.) If $L$ is regular, then $L^{*}=\left\{w\left(w=v_{1} \cdot v_{2} \cdot \ldots \cdot v_{k}\left(v_{1}, \ldots, v_{k} \in L\right\}\right.\right.$ is regular
(3.) $56 L_{1}$ and $L_{2}$ are regular, then $L_{1}+L_{2}=\left\{w / w \in L_{1}\right.$ or $\left.w \in L_{2}\right\}$
is regular
(4.) It $L_{1}$ and $L_{2}$ are regular, then $L_{1} \cdot L_{2}=\{\omega \mid W$ can be whiten as uv where $u \in L$, and $\left.v \in L_{2}\right\}$

The closure properties are useful for shoving that a language is regular.

Example
$L=\{w\} w$ has on old A of JJ


- So $L=L_{1}+L_{2}$
- Can show $L$ is regular in steps:

First construct DFAs for $L_{1}$ and $C_{2}$
Then since regular languages are closed under union ( + ), it follows that $L=L_{1}+L_{2}$ is regular.
(1.) If $L$ is regular then $L$ is regular:

Proot Let $M$ be a DFA for $L, M=\left(Q, q_{0}, \varepsilon, F, \delta\right)$ sketch

Construct $M^{\prime}$ based on $M \quad M^{\prime}=\left(Q, q_{0}, \varepsilon, F ; \delta\right)$, $F^{\prime}=\{q \in Q \mid q \in F\}$


Proiof of correctress skefch?

(1) Show $\forall \omega \in \varepsilon^{*} \quad \omega \in L \rightarrow \omega \notin L$ if $W$ accepled by $M \rightarrow \omega$ rejeeted by $M^{\prime}$
(2) $\forall \omega \in \mathcal{E}^{*}$

If $\omega$ os rejected by $M \rightarrow \omega$ accepted
(2) If $L$ is regular, then $L^{*}$ is also regular.

Prootiden
Let $M$ be a DFA for $L$ :


NA $M^{\prime}$ for $L^{*}:$

see textbook for proof of correctness of construction

Examples
$L=\{w \mid w$ starts + ends in a 1$\}$ oren $\{0,1\}$
For example

$$
\begin{aligned}
& w_{1}=10111 \in L \quad w_{2}=1001 \in L \\
& w_{1} w_{2} \in L^{*}, w_{1} w_{1} \in C^{*}, w_{1} w_{2} w_{1} \in L^{*}
\end{aligned}
$$

$L_{1}=\{w \mid w$ has leith 3$\} \quad L_{2}=\{w \mid w$ haslegth 7$\}$

$$
L_{1}+L_{2}=\left\{w \mid w \in L_{1} \text { or } w \in L_{2}\right\}
$$

For example: $1110000 \in L_{1}+L_{2}$

$$
L_{1} \cdot L_{2}=\left\{w \mid w=w, w_{2}, w_{1} \in L_{1} \text { and } w_{2} \in L_{2}\right\}
$$

$$
\begin{aligned}
L^{*} & =\varepsilon \cup L \cup L \cdot L \cup L \cdot L \cdot L \cup \\
& =\bigcup_{k \geqslant 0} \underbrace{\hat{L} \cdot \hat{L} \cdot \cdot \cdot L}_{k \text { time }}
\end{aligned}
$$

$L^{*}$ is always infinite (unless $L=\phi$, or $L-\{\varepsilon\}$ ) ex. $L=\{0\}$

$$
L^{p}=\{\varepsilon, 0,00,000, \ldots \ldots\}
$$

(3) If $L_{1}, L_{2}$ are regular, then $L_{1}+L_{2}$ is regular

Proof sketch: Let $\begin{aligned} N_{1} & =\left(R=\left\{r_{0}, \ldots, r_{k}\right\}, r_{0}, F_{1}, \Sigma, \delta_{1}\right) \text { accept } L_{1} \\ N_{2} & =\left(s=\left\{\delta_{0}, \ldots, s_{2}\right\}, \delta_{0}, F_{2}, \Sigma, \delta_{2}\right) \text { accept } L_{2}\end{aligned}$ $N_{2}=\left(s=\left\{s_{0}, \ldots, s_{2}\right\}, s_{0}, F_{2}, \Sigma, \delta_{2}\right)$ accept $L_{2}$


Pf of correctness:
show (1) If $w \in L_{1}$, or $w \in L_{2} \rightarrow \quad w$ accepted by $N$

PF of correctness
(1) Show: if $w \in L_{1}+L_{2}$ then $w$ accepted by $N^{\prime}$

Since $w \in L_{1}+L_{2} w$ is accepted by at least one of $N_{11}$ or $N_{2}$.
lase (i): w accepted by $N$,
we weed to show that in this case, $w$ is also accepted by $N^{\prime}$.
since $w$ accepted by $N_{1}$, there is a computation path of $N_{1}$ on $w$ that ends in some accept state of $N_{1}$. So in $N^{\prime}$ take upper $\varepsilon$-transition and then follow acceptim computation o $N_{1}$ on $W$.
Case(ii) $w$ accepted by $N_{2}$ : same argument.

Pf of correctres continued.
(2) Show: if $\omega \notin L_{1}+L_{2}$ thew $w$ is Not accepted by $N^{\prime}$.
Since $w \otimes L_{1}+L_{2}$ this means all computation paths of $N_{1}$ on $w$ lead to a non-accegt state and similarly all computation paths of $N_{2}$ lead to a won accept state.
So when we run $W^{\prime}$ on $w$, whether we take the upper $\varepsilon$-transition or the lover $\varepsilon$-transition, in either case we can never reach an accepting state and therefore $w$ is rejected by $N^{\prime}$
(4) If $L_{1}, L_{2}$ are regular, then $L_{1} \cdot L_{2}$ is regular. Let $N_{1}, N_{2}$

Proof ides
 be NFAs for


$$
N^{\prime}:
$$



Exercise: Work out the formal construction and proof of correctness for (1) -(4)

$$
\begin{array}{ll}
L_{1}=\{00,000\} \quad L_{1} \cdot L_{2}=\left\{w \left\lvert\, \begin{array}{l}
w \text { can be whiten } \\
\\
L_{2}=\{11\} \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
w_{1} \in L_{1}, w_{2} \text { and where } \\
\left.L_{2} \in L_{2}\right\}
\end{array}\right.\right. \\
&
\end{array}
$$

2 directions of parr of correetriess
(that if $L_{1}, L_{2}$ are regular $\rightarrow L_{1}{ }^{\circ} C_{2}$ regular
we constructed $N^{\prime}$ from NFAs or $L_{1} L_{2}$
show $\forall w \in \mathbb{E}^{*}$
$w \in L_{1} \cdot L_{2} \rightarrow W$ accepted by $N^{\prime}$
$W \in L_{1} L_{2} \rightarrow W$ wat accepted by $N^{\prime}$

Regular Expressions
Now we will give an equivalent characterization of regular languages.

A regular expression over $\Sigma$ is another (different) way of describing a Language.

DIAs: a "machine" characterization of a language
regular expression: an inductive definition of a language using operations

$$
*,+, \bullet
$$

Some examples of regular expressions over $\Sigma=\{a, b, c\}$

1. $\phi$

$$
L=\phi
$$

2. $\varepsilon$

$$
L=\{\varepsilon\}
$$

3. $a$

$$
L=\{a\}
$$

4. $a+b$

$$
\begin{aligned}
& L=\{a, b\} \\
& L=\{a b b c\}
\end{aligned}
$$

5. $a \cdot b \cdot b c$
6. $(a+b)^{*} \cdot c \quad L=\{c, a c, b c, a a c, a b c, b a c, b b c$, $a a a c$, $a a b c, \ldots, b b b c, \ldots\}$
$=\left\{w \in \varepsilon^{*}\right.$ that end in 'c' and contain no other C's $\}$

Formal Definition of a Regular Expression
Let $\varepsilon$ be a finite alphabet
$R$ is a regular expression over $\Sigma$ if:
$\begin{array}{ll}\text { (1) } R=a & \text { for some } a \in \Sigma \\ \text { (2) } R=\varepsilon \\ R=\phi\end{array} \quad$ base cases
(3) $R=\phi$
(4) $R=R_{1}+R_{2}$ where $R_{1}, R_{2}$ are regular expressions over $\Sigma$
(5) $R=R_{1} \cdot R_{2}$ where $R_{1}, R_{2}$ are regular expressions over $\varepsilon$
in ductrie cases
(6) $R=\left(R_{1}\right)^{*}$ where $R_{1}$ is a regular expression over $\Sigma$

$$
\text { N Note: in book } t \text { is } U \begin{aligned}
& \text { (union) } \\
& \text { is }
\end{aligned}
$$

More Examples

1. $((0+1) \cdot(0+1) \cdot(0+1))^{*}=0$
2. $(0+1)^{*} \cdot 1 \cdot 1 \cdot(0+1)^{*}$
3. $1^{*} \cdot 0 \cdot 1^{*}$
$\left\{\omega \in\{0,1\}^{*}\right.$ | leith $9 \omega$
 ts divisible by 3 ?

Theorem Let $\Sigma$ be a finite alphabet.
The class of languages over $\sum$ that are regular is equal to the class of languages that are descried by regular expressions

Proof has 2 directions:
(i) $L$ has a regular expression $\rightarrow L$ has an NFA (and therefore $L$ has a DFA so $L$ is regular)
(ii) $L$ has a DFA (or NEA) $\rightarrow L$ has a regular expression

An example of a language. that doesnt have ar associated regular expression:

$$
\begin{aligned}
L & =\left\{0^{n} 1^{n} \mid n \geq 0\right\} \\
& =\left\{\varepsilon_{1} 01,0011,000111, \ldots .\right\}
\end{aligned}
$$

Theorem Let $\Sigma$ be a finite alphabet.
The class of languages over $\sum$ that are regular is equal to the class of languages that are descried by regular expressions

Proof has 2 directions:
(i) $L$ has a regular expression $\rightarrow L$ has an NFA (proof uses closure properties!)
(ii) $L$ has a DFA (or NFA) $\rightarrow L$ has a regular (harder) expression
(i) $L$ has a regular expression $\rightarrow L$ has an NFA

Proof by induction on length of regular expression for $L$.
Base cases: $L=\phi$


$$
\begin{align*}
& L=\varepsilon  \tag{90}\\
& L=\{a\}, a \in \Sigma
\end{align*}
$$


(i) $L$ has a regular expression $\rightarrow L$ has an NFA

Proof by induction on length of regular expression for $L$.
Inductive step:
IWD hyp: For any $L$ described by a regular expression involving at most $K$ operations $*,+$, , $L$ has an NFA
show: any $L$ described by reg expression with $K$ operations has an NEA
(i) $L$ has a regular expression $\rightarrow L$ has an NFA

Inductive step:
IWD hyp: For any $L$ described by a regular expression involving at most $K$ operations $*,+, \cdots$, $L$ has an NFA

Show: any $L$ described by reg expression with $K$ operations has an NEA

3 cases: (i) $L=\left(L_{1}\right)^{*}$
(ii) $L=L_{1}+L_{2}$
(iii) $L=L_{1} \cdot L_{2}$
(i) follows by closure property (2)
(i)
(iii)
(4)
where $L_{1}, L_{2}$ dercubed by regular expressions using $\leq k$ operations
\{ see first slide from this lecture

