Lecture 4

Announcements:

- · Office hours start this week! (Check calender)
- · HW1 OUT (check webpage). Due in 2 weeks
- Review Sessions (optional) start soon (see calendar) handout from all review sessions will be posted on webpage
- Extra supplementary material at bottom of webpage

The closure properties are useful for shaving that a larguage
is regular.

$$L = \{w \mid w \text{ has on odd } A \in J' \\ or (w \mid = 7 \}$$

 $SO \quad L = L + L_2$

Proof
skatch
Construct M' based on
$$M$$
 $M' = (Q, Q_0, Z, F, S)$,
 $F' = \{Q \in Q \mid Q \in F\}$

L= {w | w& L }

Proof of concerness sketch? () Show twees well → w& [if w accepted by M → w rejeated by M' 2 JWEZ if is is rejected by M->w accepted by M)

(2) If L is regular, then
$$L^*$$
 is also regular.
 $L^* = \{ w \mid w = w_1 \dots w_k, where each w_i \in L, for some k \ge 0 \}$
Let M be a DFA for L:
 $V = \{ w \mid w = w_1 \dots w_k, where each w_i \in L, for some k \ge 0 \}$

NFA M' for
$$L^*$$
:

see textbook for proof of correctness of construction

$$\frac{E_{\text{Kumple}}}{L} = \{ w \} \text{ w starts + Rads in a 1} \} \text{ det } \{0,1\}$$
For example
$$W_{i} = 10111 \text{ eL} \quad W_{z} = 1001 \text{ eL}$$

$$W_{i} W_{z} \in L^{*}, \quad W_{i} W_{i} \in L^{*}, \quad W_{i} W_{z} W_{i} \in L^{*}$$

$$L_{i} = \{w\} \text{ w has lefth } 3\} \quad L_{z} = \{w| \text{ w has lefth } 3\}$$

$$L_{i} + L_{z} = \{w| \text{ wel}_{i} \text{ or } w \in L_{z}\}$$
For example: 1110000 E L_{i} + L_{z}
$$L_{i} - L_{z} = \{w| w = w_{i} w_{z}, w| \in L_{i} \text{ and } w_{z} \in L_{z}\}$$

K = EULULUULUU

L' is always infinite Curless
$$L = \phi$$
, or $L^{-} \{\epsilon\}$)
ex. $L = \xi \circ \beta$
 $L^{\prime} = \xi \epsilon, 0, 00, 000, \dots, 5$

3 If
$$L_1, L_2$$
 are regular, then $L_1 + L_2$ is regular
Proof Sketch: Let $N_1 = (R - 2r_{0,1-1}, r_k), r_0, F_1, \Xi, S_1)$ accept L_1
 $N_2 = (S = \{S_{0,1-1}, S_k\}, S_0, F_2, \Xi, S_2)$ accept L_2

Pf of convectness

Pf of concidence continued.

Exercise: Work out the formal construction and proof of correctness for 1-4

 $W = W_{1} W_{2}$

$$L_{1} = \{00, 000\}$$

$$L_{1} = \{w \mid w \text{ can be written} \\ as w_{1}w_{2} \text{ where} \\ W_{1} \in \mathcal{L}_{2} = \{1, 3\}$$

$$W_{1} \in \mathcal{L}_{2} = \{w \mid w \text{ can be written} \\ W_{2} \in \mathcal{L}_{2} \}$$

Now we will give an <u>equivalent</u> characterization of regular languages.

A regular expression over Z is another (different) way of describing a language.

some examples of regular expressions over E= Ea, b, c} $L = \Phi$ **ι**. Φ L= {E? 2. 2 L= {a? 3. a L = {a, b} 4. atb L= {abbc } s abbc 6. (a+b)*c L= {c, ac, bc, auc, abc, buc, bbc, aaac, aabc, ..., bbbc, ... ? = { we E* that end in 'c' and contain no other c's }

Formal Definition of a Regular Expression
Let
$$\Sigma$$
 be a finite alphabet
R is a regular expression over Σ if:
(1) $R = a$ for some $a \in \Sigma$ base cases
(3) $R = b$ base cases
(3) $R = k$ there R_1, R_2 are regular
 $e \times pressions$ over Σ inductive cases
(5) $R = R_1 \cdot R_2$ where R_1, R_2 are regular
 $e \times pressions$ over Σ inductive cases
(6) $R = (R_1)^{k}$ where R_1 is a regular
 $e \times pression over \Sigma$

* Note: in book + 15 V (unión) · is o (concasenatión)

More Examples
1.
$$((0+i)(0+i)(0+i))^*$$

2. $(0+i)^* \cdot 1+1 \cdot (0+i)^*$
3. $1^* \cdot 0 \cdot 1^*$
 $\{we (a_1)^* \mid e_1 kh \in w_{TS} \ e_1 kh \in w_{TS} \ e_2 kh \in w_{TS} \ e_1 kh \in w_{TS} \ e_2 kh \in w_{TS} \ e_1 kh \in w_{T$

Proof has 2 directions:

(i) L has a regular expression -> L has an NFA (and therefore L has a DFA so L is regular)

$$L = \{ 0^{n} | n \neq 0 \}$$

$$= \left\{ \xi_{1} 01, 0011, 000111, \dots, \right\}$$

(i) L has a regular expression -> L has an NFA Proof by induction on length of regular expression for L. 0,1 - (9.54 Base cases : $L=\phi$ $\rightarrow (q_1) \sim \circ_1$ -@ L=E L= {a}, a E =

a. 6

(i) L'has a regular expression -> L'has an NFA Proof by induction on length of regular expression for L. Inductive step: IND hyp: For any L described by a regular expression involving at most K operations *, t, . , L has an NFA show: any L described by regespression with K operations has an NFA

(i) L'has a regular expression -> L'has an NFA

Inductive step:
IND hyp: For any L described by a regular expression involving
at most K operations
$$*, +, \cdot, \cdot, L$$
 has an NFA
show: any L described by regenpression with K operations
has an NFA
3 cases: (i) $L = (L_1)^{*}$ where L_1, L_2 described by
(ii) $L = L_1 + L_2$ is operations
(iii) $L = L_1 + L_2$ is operations
(iii) $L = L_1 - L_2$
(iii) $L = L_1 - L_2$