Announcements:

Office hours start Next week (see calendar) HW1 out Monday Nondeterministic Finite Automata (NFA's)

Formal Definition of an NFA

$$N = (Q, Z, Q_{2}, F, S)$$

 $A = (Q, Z, Q_{2}, F, S)$
finite set finite starte accept $S: Q \times [Z \cup S \in \tilde{S}] \rightarrow B(Q)$
finite set finite starte starte $S = \{Q, I\}$ power set of Q

$$P(Q) \text{ is the set of all subsets of } Q$$
Example:

$$P(\{q_{0}, q_{1}, q_{2}\}) = \left\{ \phi_{1}\{q_{0}\}, \{q_{1}\}, \{q_{2}\}, \{q_{0}, q_{1}\}, \{q_{0}, q_{2}\}, \{q_{0}, q_{2}\}, \{q_{0}, q_{2}\}, \{q_{0}, q_{2}\}, \{q_{0}, q_{1}\}, \{q_{0}, q_{2}\}, \{q_{0}, q$$

Formal Definition of an NFA E, E., F finile start ac uphabet starle st N = (Q, A ٤) $S: Q \times \Xi \cup \{ \epsilon \} \rightarrow \mathcal{Q}(Q)$ accept States finite finde set of states power set of Q

Example

ς;

Υ.

	0	1	٤
4.3	{q, }	<i>₹2</i> , <i>2</i> , <i>3</i>	ϕ
۹,	{qz}	¢	<i>{</i> ? <i>}}</i>
9,	φ	{q3}	ø
Ч _З	{e3}	{2,}	ø

Formal Definition of an NFA

$$N = (Q, Z, Q_{0}, I^{2}, S)$$
finile set finile start accept $S: Q \times E \cup S \in S \rightarrow P(Q)$
finile set finile start accept $S: Q \times E \cup S \in S \rightarrow P(Q)$
power set of Q
An NFA accepts a string $W = W_{1}, W_{2}, ..., W_{n}$ if we can
write $W = Y, Y_{2} \dots Y_{m}$ where each $Y_{1} \in E \cup S \in S$, and
there exists a sequence of startes $r_{0}r_{1} \dots r_{m}$, $r_{1} \in Q$ such that:
 $0 \quad r_{0} = Q_{0}$
 $2 \quad V_{u_{1}} \in S(r_{1}, Y_{1+1})$ $\forall i = 0, 1, ..., m^{-1}$
 $3 \quad r_{m} \in F$
 $Z(N) = set of strings accepted by N$

Formal Definition of an NFA

An NFA accepts a string W=W1, W2,... When if we can write W = Y1, Y2.... Ym where each Yi ∈ E ∪ Se3, and there exists a sequence of states for rm, rieQ such that:
① fo=Q.
② Vu1 ∈ S(ri, Y1+1) ∀i=0,1,..., m-1
③ Im ∈ F

W=0111
$$q_0 \rightarrow q_0 \rightarrow q_1 \stackrel{\varepsilon}{\rightarrow} q_2 \rightarrow q_3 \rightarrow q_3$$

write w= 01 \varepsilon 1

W=00000 is not accepted

Are NFAS more powerful than DFAS?

Are NFAs more powerful than DFAs? NO!
Theorem If
$$L \leq z^*$$
 is accepted by a NFA, then
L is regular (that is, L is accepted by some DFA)

W = 0011

E^POE^{*}OE^{*}1E^{*}1E^{*}

$$\frac{\text{Are NFA: more powerful than DFAs}}{\text{Theorem. If } L \leq z^* \text{ is accepted by a NFA, then } L \text{ is regular (that is, L is accepted by some DFA)}$$

$$\frac{\text{Example: N:}}{a \subseteq z} \qquad M : \qquad$$

Are NFAs more powerful than DFAs? NO!
Theorem. If
$$L \leq z^*$$
 is accepted by a NFA, then
L is regular (that is, L is accepted by some DFA)
Example: N:
 $a \subseteq (2,) = (2,)$
The construction satisfies the following property:
for every (sub)string W, Let
 $Q'_{v} \in Q$, be the set Q all possible states that we could
be in when running N on W
Then the DFA M on W ends in the state Q'_{v}

Closure Properties of Regular Languages
1. If
$$L \in 2^{*}$$
 is regular, then $\overline{L} = \{ w \in 2^{*} \mid w \notin L \}$ is also regular
2. If L is regular, then $L^{*} = \{ w \mid w = v_{1} \cdot v_{2} \dots v_{k} \mid V_{1} \dots v_{k} \in L \}$
is regular
3. If L_{1} and L_{2} are regular, then $L + L_{2} = \{ w \mid w \in L \}$ or $w \in L_{2} \}$
is regular
4. If L_{1} and L_{2} are regular, then $L_{1} \cdot L_{2} = \{ w \mid w \in L \}$ or $w \in L_{2} \}$