
Lecturer Last Class !

Announcements :
HW3 sows posted
HW4 Solms posted later today
* Test 2 Review this Friday 4- 6- !

[check announcements
for zoom link if you

can't attend in person .

today :

Review for test 2

Closing
comments

* I will post sows to Review Qs in next day or so
(but try to solve yourself first !)

this course is about how hard problems are
"

languages
"
are problems. For NOW think of

languages as problems .

We will characterize problems into some classes

Regular languages /DF As

context - free languages (PDAs

computable/decidable
'

Languages /TMS

complexity theory : P
,
NP

, NP-complete

Examples of Languages

L1 = { WE {0,14 f w has an even number of 1's}

Lz = { WE {0,13*1 w ends with 011 }
i

13 = { we { 0,1 }
*

I w ' 0^1
"

,

n ? I } s

Ly s { WE {0,427 I w :O" I
" I
,
n 31} .÷÷:÷⑧Ls = { we {0,1]

"

I w encodes a connected graph}

LG
= { (9,141 g contains a K - clique }

<y
= { (Mix> I M halts on × }

18 = { 49×7 / M does not halt on × }
decidable

recognizable

Example of a problem that is

decidable but probably not in NP :

Maj SAT : input is a 3.CNE formula $
over ×, . - - Xn

accept of iff the # of satisfying
assignment $ is 3 272

Recursively C-numerable (RE) / Recognizable Languages

A Language L E É is R_E or recognizable if

there exists a TM M such that LCM) =L
.

That is : ✓WE L M on w halts and accepts , and

Hwa L M on w either halts o rejects or never halts

A Language L a- E☒ is recursive or decidable if

there exists a TM M such that LCM) =L and M

halts on all inputs

That is : ✓WE L M on w halts and accepts
and Hwa L M on W halts and rejects

Church - Turing this is

Every reasonable model of computation

can be simulated by a TM .

In other words,
Tms can compute any function

that can be computed by any
current / future computational device

]

7

CLOSURE PROPERTIES

-

① L recursive ⇒ L ne,

② Closure of recursive languages under n , v , 7 :

L
, ,
he recurs

lie ⇒ 4uLz , 4^42,74 ikz are recursive

⑤ Closure of re. Languages under n , U What about
4 , here .

⇒ huh , 4ns are me
. ¥n%%eyf•,?⃝

④ L is re .
and I is re . ⇒ his recursive

let M
,
be TM that accepts 4, Mz same for I

tag L Ts ne
.

but not teemsice
.

what about I ? It is not me .

If his accuse 're → I is recursive

If L is v. e. ⇒ I could be me
.

or not

① " "
mi:÷:÷÷÷÷÷÷:*.

is not me
.

← proof by
diagonalnation

② D- = { am> I MKM>) halts and accgsts}
If L recursa)¥:÷ .is me. but Not recursive

recursive

③ A,µ={ LM,w> I M accepts w } is re
.
but Not recursive

ATM is Not re.

④ HALT = { <M
,

W> IM halts m w} . HALT Not me
.

⑤ Nonempty : r- e .
Not recursive

Empty : Not me .

Tips for characterizing a given Language

① Try obvious algorithms to see if you think
his

a. * "" " ""
"" " """ "

"""

÷÷÷
recursive / me .

(dovetailing technique useful to
show r_ e.)

Watch out for tricks - -if L defined based on some

property of the machine G
not a property of L)

② To prove L is
Not me

,
sometimes helpful to look at I

(If I is re .

but not recursive then L not me.)

③ get reduction
in correct direction !

④ Sometimes in reduction
,

Need to construct an intermediate

TM that ignores its own input . .

theClass"

Dein let t : IN → IN Ct = runtime)

TIME (tcn)) = { L l L is a language decided by a

octant) - time TM }

Dein t : IN → IN is polynomial if tcn) = Of nk) for some 1<>-0

EI ten)=n? ten)=n
,

ten) = nlogn are polynomial
(Ecn) - ribs" or ten)=zn are not polynomial .)

Deth P = { L l L is a language decided by a

TM running in polynomial time }

* We think of problems in P as those that have

relatively efficient algorithms .

the (even more Famous) class NP

Detn NP = { LI L is a language decided by a Nondeterministic
TM running in polynomial time }

Equivalent Defn of NP

A verifier for Language Le { 0,13¥ is an algorithm
L= { w I VCW

,
c) accepts } where c is an additional

string that we call a certificate or proof

A verifier is polynomial - time if it runs in time

polynomial in IWI .

* Note that if A is a poly time verifier then ICI must

also be polynomial in IWI .

De_fn2 NP = { L l L has a polytime verifier}

\

NP - Completeness

Definition Language A is polynomial-time (mapping) reducible to
B (written A =p B) if there

is a polynomial-time computable
function f : St →Et such that wet ⇒ flute B

f
• *

A
•

B
f

boo

Definition
• A language B a- { 0,13¥ is NP - hard if for every AENP there

is a polynomial time reduction from
A to B (A Ep B)

• Be { 0,17 is NP-complete if : d) B is in NP and

(ii) B is NP-hard

NP - completeness

Cook - Levin theorem

For every K> 3 3-SAT is NP - complete

To show another language L is Np complete
we grist need to show :

(1) L c- NP

(2) show L
'

- 4-
p
L

for some NP-complete Language 20

Examples of other NP - complete Languages

(1) CLIQUE

(2) HAM PATH

Teso 2 Format (Similar format as test 1)

① True False Question

② Prove a language
-

is Acoustic /re/ NA recursive

③ Prove a language is NP complete

④{
short answer questions

⑤

Computer Science Theory, Test 2 Review Problems
Prof. Toniann Pitassi

1. Answer True or False for each statement. No justification is needed.

(a) n = O(n2)

(b) n log n = O(n)

(c) n
n = O(2n)

(d) Let A be mapping reducible to B. If B is decidable then A must be decidable.

(e) Let A be mapping reducible to B. If A is decidable then B must be decidable.

(f) If the complement of a language L is not recognizable then both L and ¬L are
not recognizable.

(g) If A is NP-complete, A ✓ B, and B is in NP then B is NP-complete.

(h) If B is NP-complete and A ✓ B and A is in NP then A is NP-complete.

2. Let Double-CLIQUE denote the language consisting of all pairs (G, k) such that G is
an undirected graph containing two disjoint cliques each of size k. Prove that Double-
CLIQUE is NP-complete.

3. Prove that the following set is countable.

S = {(i, j) | i � 0 and j > i}

4. Prove that the following set is uncountable.

S = {L ✓ {0, 1}⇤|the number of strings in L is finite}

5. Prove that NP is closed under union. That is, for every L1, L2 2 NP, L1 [L2 is also
in NP.

6. Prove that NP is closed under concatenation.

7. Let L be the language consisting of all pairs < M > such that M encodes a Turing
machine and M accepts at least two inputs.

(a) Prove that L is recognizable.

(b) Prove that L is not decidable.

8. Recall that 3SAT is the set of all 3-CNF formulas � such that � is satisfiable. Let
Search-3SAT be the following search problem: Given a 3CNF formula �, output a
satisfying assignment for � if one exists, and otherwise output “� is unsatisfiable”.
Prove that if 3SAT 2 P, then Search-3SAT can be solved in polynomial-time by a
deterministic TM.

1

=
Kcet

" "G)
,
n= off ,

A←mB

"

*

(1^1) A ←
m
B.
. IAND Bts decidable

.

Is A also decidable ?

-

To decide A :

an input w : coyote fcw)

If tfcw) c- B (can decide this since Bts decidable)

then we A

If few)☒D then AHA

A a-
m
B
.

Now A is decidable
. ?⃝⑥

Is B decidable ? False .

want to show :a counterexample .

Let A = { we EO.it I w ends in a 13 ← deccdajq
let B = HALT ← Not decidable

Shou : A ← m B

f- fw) : check if W ends in a 1

if yes then MP fcw)→ <MALwsys.net 10)

If no then mp few) → gm
ALWAYS - Loop ,

)
where Maiwayshaet : halts immediately on all inputs

Micwssyscoop : okoop freer on all inputs

<Mahout > =

ignore input
anhalta. → B ⑨→r

→
4M↳p) :

If B decidable then A is decidable True 'Sme inputand

infinitelyIf A ☐ decidable then B- is decidable FALSE 1%-4
Counterexample :

D=
'
halt

A- (Weant / w has met}}
f- (w) : see if W has >one 1 If so flw) → {Mitsu >

ow Fcw) → CM↳op)

?⃝ L = { 2m11 M accepts at least z inputs } LCM # E Eo
,
, }*

(a) prove L is me
,

WCÉ%?ei) : D= Sam> 1M accepts at least one input } is re .
(let ×

, ,Xz, . . .
.

be an enumeration of
Alg ? all strip in $0,1T }
For C- = 1,2, -

- - - -
-

siinulate M on strip ×
,
. - . ✗

+]for t steps each
.

"

na.gg, any gym , nay nay,

go

?⃝ L = { 2m11 M accepts at least z inputs } LCM # c- Eo
,
, }*

(a) Prove L is ne
,

n

Alg :

For t = 1
,
2
,

-
- -

.

- -
-

'

.
i

simulate .tl on the first t strip, X, . - ¥
each for t steps*Keep a count for .

how many are accepted .
If count reaches 2 halt and accept

7

?⃝ L = { Lull M accepts at least 2 inputs } ←

Isis
(b) Prove L -

is not recursive
HALT not recursive
HALT Ts re

.

To prod L is not recurve Atm's not recursive.

it is r
- e

.

we will sie a m_ Twrjlmppiy
reduction ft : HALT → L

HALT -_ { LM,x > I M halts on ×}

7

7. L = { 2m11 M accepts at least z inputs }

Isis
(b) Prove L -

is not recursive
HALT not recursive
HALT Ts re

.

{
Assume his decidable, and

Let N be a TM that decides L
,

Atm is not recursive.

it is r
- e

.

We will use N to create M that decides Half :

M: or input GM, *> want

f:÷T→sñM
'

: on input w sit
. M halts on ✗ iff(ÉEgcc☒ M

'

accepts =z inputs
Éraw : simulate M on ✗

if M halts on ✗ → half ✗ accept W -

\

Mopping reduction f on input 5M,
x) outs

fam
,
xD → out>

where M
'

is wolf:<my → SM
'

?+
M

'

: on input w S.t. M halts on ✗ iff
M

'

accepts 32 inputs(¥=Éxatcgt\①④gµ⇒ , g.manage µ on ✗

if M halts on ✗ → half ✗ accept W -

By defn put

① 4%7×7 c- HALT → ¥6M
,
✗7) c- L ←if <m

,
×> c- Halt

then LCM
')=as¥µip

so
6- L② em

,
×> ☒ HALT → FKM ✗7)☒ L ← By defnqmi

if <Mix> ☒Half then-h(M%$¥☒L

⑧ Search - >SAT : Input 4 a 3ssT Formula $

output : {
uwsst it of ✗ unsatisfiable

a satisfying assignment if $ is satisfiable

Prove : If 3ssTEP then search -3sATE P

C-Be : let of = (Yixing) Cxjvxzvxy)Cx,)lFy)
(for 30nF to our ×

, .
- Xn

8%1+4177+47) = (ri)
-

all clauses & T
of she 3

idea on input § of = (Yixing) Cxjvxzvxy) (E) (Xj)
① Call 3 SAT (Q)

If accepts rejects → ohuttpht unsst

(② 0W (Q is satisfiable) :

see if I a sat
. cess with X

,
=)

.

If so Renoir} see if I sat .
cess with 4=1 , ✗g- I

^

.

If not 3- asdf cess w/ 4=0
so rec. see if I sat . ad with 4=0, . - .

Let 4=1 .
Let 01 /

×, ,
= of where we substitute × ;-)and simplify

in our example 014
, ,
: Cxivxylxilxj)

☒ 4 BSAT (0×1--1) .

idea on input § of = (Yixing) Cxjvxixy) (Xs) (Xj)
Ig

.

✗ = { 3
,
01 .

r ,

Coop : i --1,2, . . . n :

Fet
¥1 .

Let 01=011*-1
(in our example 011¥ , : Cxivxylxilxj))µ , ⇒say ×, ,) .

.

If accepts, let 2 = old ✗ u {4--1}
, 01=01/2If rejects let ✗ = old ✗ U E 03,10=011,

Output ✗

