Lecture 24 Last Class:
Announcements:
HW3 solus posted
HW4 solus posted later today

* Test 2 Review this Friday 4-6!
© check announcements for zoom link if you

Today: cant attend in person.

Review for Test 2
closing comments

* I will post sola's to Review Rs in Next day or so (but try to soll yourself first!)

This course is about how hard problems are "languages" are problems. For Now think of languages as problems.

We mil characterioc problems into some classes
Regular Languages/DFAs
context-free languages /PDAs
computable/decidable languages / TM Complexity Theory: $P, N P$, NP-complete

Examples of Languages
$L 1=\left\{w \in\left\{0,13^{*} \quad \mid w\right.\right.$ has an even number of 1 's $\}$
$L 2=\left\{w \in\{0,1\}^{*} \mid w\right.$ ends with 011$\}$
$L\}=\left\{w \in\{0,1\}^{*} \mid w=0^{n} 1^{n}, n \geqslant 1\right\}$
$L 4=\left\{w \in\{0,1,2\}^{n} \mid w=0^{n} 1^{n} 2^{n}, n \geq 1\right\}$
$L 5=\left\{w \in\{0,1\}^{k} \mid w\right.$ encodes a connected graph $\}$
$L_{6}=\{(g, k) \mid g$ contains a k-clique $\}$
$L T=\{\langle\mu, x\rangle \mid M$ halts on $x\}$
$L 8=\{\langle M, x\rangle / M$ does not halt on $x\}$

Example of a problem that is decidable but probably not in NP:

MajSAT: input is a 3CNF formula ϕ an $x_{1} \ldots x_{n}$
accept is of the \# of sutisbing assignments is $\geqslant 2^{n} / 2$

Recursively Enumerable (RE) / Recognizable Languages

A Language $L \leqslant \Sigma^{*}$ is $R E$ or recognizable if there exists a TM M such that $f(M)=L$.

That is: $\forall w \in L \quad M$ on w halts and accepts, and $\forall W \& L M$ on w either halts a rejects or Never halts

A Language $L \leq \Sigma^{*}$ is recursive or decidable if there exists a TM M such that $\mathcal{L}(M)=L$ and M halts on all inputs
That is: $\forall w \in L \quad M$ on w halts and accepts and $\forall W \& L \quad M$ on w halts and rejects

Church-Turing Thesis

Every reasonable model of computation can be simulated by a TM.

In other words, TMs can cornute any function that can be computed by any current / future computational device

CLOSURE PROPERTIES
(1) L recursive $\Rightarrow L$ r.e.
(2) Closure of recursive languages under $\cap_{1}, U_{1}, 7$: L_{1}, L_{2} recursive $\Rightarrow L_{1} \cup L_{2}, L_{1} n L_{2}, \neg L_{1}, L_{2}$ are recursive
(3) Closure of re. Languages under n, u L_{1}, L_{2} re. $\Rightarrow L_{1} \cup L_{2}, L_{1} n L_{2}$ are re.

(4) L is re. and L is re. $\Rightarrow L$ is recursive Let M_{1} be TM that accepts L, M_{2} same for L

Ing L is re. but not recmsive. what about \sum ? It is not rue.

If L is recousile $\rightarrow \bar{C}$ is recurnsie

If L is r.e. $\Rightarrow L$ coned be r.e. or not

Decidability of other Languages
(1) $D=\{\langle\mu\rangle(M(\langle\mu\rangle)<$ Diagonal Language
(1) $D=\{\langle\mu\rangle \mid M(\langle\mu\rangle)$ does not accept $\}$ is not re. 4 Plot by diagonalization
(2) $\bar{D}=\{\langle M\rangle \mid M(\langle M\rangle)$ halts and accepts $\}$ is re. but not recursive

$$
\left(\begin{array}{l}
\forall L \leq E^{x} \\
I f L \\
\text { then } I \text { also } \\
\text { recursive }
\end{array}\right)
$$

(3) $A_{\text {TM }}=\{\langle M, w\rangle \mid M$ accepts $w\}$ is re. but not recursive $\overline{A_{T M}}$ is not re.
(4) HALT $=\{\langle\mu, w\rangle$ (M halts on $w\}$. $\overline{\text { HALT }}$ Not re.
(5) Nonempty : re. Not recursive Empty: Not re.

Tips for characterizing a given Language
as (1) recursive; (2) recursive but not re; (3) Not reese.
(1) Try obvious algoritams to see if you think L is recursive /r.e. (dovetailing fechnique useful to show re.) Watch out for trick. - if L defined based on some property of the machine (a wot a property of L)
(2) To prove L is Not re., sometimes helpful to look at \bar{L} (If L is re. but not recursix then L wot re.)
(3) Get reduction in correct direction!

(4) Sometimes in reduction, weed to construct an intermediate TM that ignores its own input.
the class "P"
Def let $t: \mathbb{N} \rightarrow \mathbb{N} \quad(t$ a runtime $)$
$\operatorname{TIME}(t(n))=\{L \mid L$ is a language decided by a $O(t(n))$-tine $T M\}$

Def $t: \mathbb{N} \rightarrow \mathbb{N}$ is polynomial if $t(n)=O\left(n^{k}\right)$ for some $k \geqslant 0$
Ex $t(n)=n^{2}, t(n)=n, t(n)=n \log n$ are polynomial
$\left(t(n)=n^{\log n}\right.$ or $t(n)=2^{n}$ are not polpromaid.)
Defn $P=\xi L \mid L$ is a language decided by a TM running in polynomial tine $\}$

* We think of problems ir P as those that have relatively efficient algor thus.

The (even more Famous) class NP

Defn1 NP $=\{L \mid L$ is a language decialed by a Nondeterministic TM running in polynomial tine $\}$
Equivalent Def of NP
A verifier for Language $L \subseteq\{0,1\}^{*}$ is an algorithm
$L=\{w \mid V(w, c)$ accepts $\}$ where c is an additional string that we call a certificate or proof
A verifier is polynomial-time if it runs in time polynomial in $|w|$.

* Note that if A is a polytime verifier then $|c|$ must also be polynomial in $|w|$.

Defnz NP $=\{L \mid L$ has a polytime verifier $\}$

NP-Completeness
Definition Language A is polynomial-time (mapping) reducible to B (written $A \leqslant p B$) if there is a polynomial-time computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that $w \in A \Leftrightarrow f(w) \in B$

Definition

- A language $B \subseteq\{0,1\}^{*}$ is NP-hard if for every $A \in N P$ there is a polynomial time reduction from A to $B(A \leqslant p B)$
- $B \subseteq\{0,1\}^{x}$ is NP-complete if: (i) B is in NP and
(ii) B is NP-hard

NP, completeness

Look-Levin theorem
For every $k \geq 3$ 3-SAT is $N P$-complete

To show another Language L is ip p conpleve we gust need to show:
(1) $L \in N P$
(z) Show $L^{\prime} \leq p L$
for some NP-complete Language L^{\prime}

Examples of other NP-Complete Languages
(1) CLIQUE
(2) HAMPATH

Test 2 Format (Similar format as Test 1)
(1) True False Question
(2) Prove a language - is recunsiu/re/ not recompile
(3) Prove a language is NP complete
(4) Short answer questions
(5)

Computer Science Theory, Test 2 Review Problems
 Prof. Toniann Pitassi

1. Answer True or False for each statement. No justification is needed.

$$
\begin{aligned}
& \text { (a) } n=O\left(n^{2}\right) \quad n=O(n), n=O\left(\frac{n}{4}\right) \\
& \text { (b) } n \log n=O(n) \\
& \text { (c) } n^{n}=O\left(2^{n}\right) \\
& \text { (d) Let } A \text { be mapping reducible to } B \text {. If } B \text { is decidable then } A \text { must be decidable. } \\
& \text { (e) Let } A \text { be mapping reducible to } B \text {. If } A \text { is decidable then } B \text { must be decidable. } \\
& \text { (f) If the complement of a language } L \text { is not recognizable then both } L \text { and } \neg L \text { are } \\
& \text { not recognizable. } \\
& \text { (g) If } A \text { is NP-complete, } A \subseteq B \text {, and } B \text { is in NP then } B \text { is NP-complete. } \\
& \text { (h) If } B \text { is NP-complete and } A \subseteq B \text { and } A \text { is in NP then } A \text { is NP-complete. } \\
& \text { 2. Let Double-CLIQUE denote the language consisting of all pairs }(G, k) \text { such that } G \text { is } \\
& \text { an undirected graph containing two disjoint cliques each of size } k \text {. Prove that Double- } \\
& \text { CLIQUE is NP-complete. }
\end{aligned}
$$

3. Prove that the following set is countable.

$$
S=\{(i, j) \mid i \geq 0 \text { and } j>i\}
$$

4. Prove that the following set is countable.

$$
S=\left\{L \subseteq\{0,1\}^{*} \mid \text { the number of strings in } L \text { is finite }\right\}
$$

5. Prove that NP is closed under union. That is, for every $L_{1}, L_{2} \in \mathrm{NP}, L_{1} \cup L_{2}$ is also in NP.
6. Prove that NP is closed under concatenation.
7. Let L be the language consisting of all pairs $<M>$ such that M encodes a Turing machine and M accepts at least two inputs.
(a) Prove that L is recognizable.
(b) Prove that L is not decidable.
8. Recall that 3SAT is the set of all 3-CNF formulas ϕ such that ϕ is satisfiable. Let Search-3SAT be the following search problem: Given a 3CNF formula ϕ, output a satisfying assignment for ϕ if one exists, and otherwise output " ϕ is unsatisfiable". Prove that if 3 SAT $\in P$, then Search-3SAT can be solved in polynomial-time by a deterministic TM.
(1d) $A \leq m B$. And B is decidable.
Is A also decidable?

To leadl A :
on iput ω : conjute $f(w)$
If $f(w) \in B$ (can deciele this sinice B is deciduble) then $w \in A$
If $f(w) \in B$ then A
(ie) $A \leq m B$. Now A is decidable.
Is B decidable? False. want to show a counter example.
Let $A=\left\{w \in\{0,1\}^{*}\right) w$ ends in a 1$\} \leftarrow$ deccalable
let $B=$ HALT \leftarrow Not decidable
Shes: $A \leq m$
ff (w) : check if w ends in a 7 If yes then mg $f(w) \rightarrow\left\langle M_{\text {AlwAYSHALT }}, 0\right\rangle$ If no then $n p f(\omega) \rightarrow\left\langle M_{\text {Awrsys-wop }}, 0\right\rangle$
where $M_{\text {avacyshalt: }}$ halts immediately on all iputs
$M_{\text {Alwassloor : coop freer on all inputs }}$

$$
A \longrightarrow B
$$

If B decidable thew A is decidable True
If A is decidable then B is decidable FALSE ${ }^{\text {lop }}$ In dey
Counterexample:

$$
\begin{aligned}
& B=\text { halt } \\
& A=\left\{w \in\{0,1\}^{+} \mid w \text { has one } 1\right\}
\end{aligned}
$$

$f(w)$: see if w has \geqslant one 1 if so $f(w) \rightarrow\left\langle M_{\text {HALT }}\right\rangle$ ow $f(w) \rightarrow\left\langle M_{\text {Lop }}\right\rangle$
(7.) $L=\{\langle M\rangle 1 M$ accepts at least 2 inputs $\} \quad \mathcal{R}(M) \in\{0,1\}^{*}$
(a) Prove L is re.,

Warmup
(Eabiei): $L^{\prime}=\{\langle M\rangle \mid M$ accepts at least one input $]$ is re.
(let x_{1}, x_{2}, \ldots be an enumeration of
Alg:
\rightarrow For $t=1,2, \ldots$. all strip p in $\left.\{0,1\}^{*}\right\}$

Simulate M on strip $x_{1} \ldots x_{t}$
for t steps each.
If M accepts any of them \rightarrow hall raccept OW
(7.) $L=\{\langle M\rangle 1 M$ accepts at least 2 inputs $\} \quad \mathcal{R}(M) \leq\{0,1\}^{*}$
(a) prov L is re.

Alg:

$$
f^{p^{\text {For }} t=1, z, \ldots}\left[\begin{array}{c}
\text { simulate } M \text { on the first } t \text { strip, } x_{1} \ldots x_{t} \\
\text { each for } t \text { steps } \\
\text { keep a count for how many are accepted. } \\
\text { If cunt peaches } z \text { halt and accept }
\end{array}\right.
$$

(7.) $L=\{\langle M\rangle \mid M$ accepts at least 2 inputs $\}$
(b) Prove L is not recursive

To prove L is not recuse ne will side a Turf/ mppin

Y SE
HALT not recmicie HALT is re.
$A_{T M}$ is not recursive it ir roo.
redlection $C_{5}: H A L T \rightarrow L$

$$
\text { HALT }=\{\langle M, x\rangle \text { I } M \text { halts on } x\}
$$

7. $L=\{\langle\mu\rangle \mid M$ accepts at least 2 inputs $\}$
(b) Prove L is not recursive

Assume L is decidable, and Let N be a TM that decides L.

USE
HALT not recursive HALT is re.
$A_{T M}$ is not recessive it is ross. We will use N to create M that decides Nat: M : or input $\langle M, x\rangle$

M: on input w
If $\omega=o^{\prime}$ thai it + accept
ow (fo rath $w 0^{\circ}$): simulate M on x if M halts on $x \rightarrow$ halt accept w.

Mapping reduction f on input $\langle\mu, x\rangle$

$$
f(\langle M, x\rangle) \rightarrow\left\langle M^{\prime}\right\rangle
$$

where M^{\prime} is
wanl

$$
f_{0}:\langle M, x\rangle \rightarrow\left\langle M^{\prime}\right\rangle
$$

M: on ippat w
s.t. M halts on x iff
if $w^{\prime}=Q^{\prime}$ bealt $>$ accepet
OD (forattw 0^{\prime}): simulate M on x if M nalts on $x \rightarrow$ halt acapt w.

By defr q μ^{\prime} if $\langle\mu, x\rangle \in$ Hart then $f\left(M^{\prime}\right)=$ all so $\left\langle M^{\prime \prime}\right\rangle \in L$
(1) stbu
(2) $\langle M, x\rangle \notin$ WALT $\rightarrow f(\langle M, x\rangle) \notin \operatorname{By}^{\prime}$ depn of $M^{\prime \prime}$ If $\langle M, x\rangle$ \& flalt of then $R\left(M^{\prime}\right)=\phi$ so
(8.) Search-3SAT: Input in a SSAT Formula ϕ Output: $\left\{\begin{array}{l}\text { UWSAT it } \phi \text { un unsatisfiable } \\ \text { a satisfying assignment if } \phi \text { is satisfiable }\end{array}\right.$

Prove: If 3satep then search-3SATEP

Example: Let $\phi=\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\left(\bar{x}_{j} \vee \bar{x}_{2} \vee x_{4}\right)\left(x_{3}\right)\left(\bar{x}_{y}\right)$
(For $3 C N F \phi$ over $x_{1} \ldots x_{n}$

$$
\underbrace{8\binom{n}{3}}_{\substack{\text { all clauses } \\ \text { of sine } 3}}+4 \underbrace{\binom{n}{2}}_{2}+2\binom{n}{1}=O\left(n^{3}\right)
$$

Idea On input $\phi \quad \phi=\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{4}\right)\left(x_{3}\right)\left(\bar{x}_{y}\right)$
(1) Call 3SAT (ϕ)

If \rightarrow hajecis \rightarrow output UNSAT
(2) ow (ϕ is sutispable):

See if \exists a sat. ass with $X_{1}=1$.
If so remsieh see if ∂ sat, ass with $x_{1}=1, x_{2}=1$
If not \exists usaf ass if $x_{1}=0$
so rec. see if \exists sat. ans with $x_{1}=0, \ldots$
Let $x_{1}=1$. Let $\left.\phi\right|_{x_{1}=1}=\phi$ where we substitute $x_{1}=1$ and singlify
in om example $\left.\phi\right|_{x_{1}=1}:\left(\bar{x}_{2} \vee x_{4}\right)\left(x_{3}\right)\left(\bar{x}_{4}\right)$ $\operatorname{call} 3 \operatorname{sat}\left(\phi_{x_{1}=1}\right)$.

Idea On input $\phi \quad \phi=\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{4}\right)\left(x_{3}\right)\left(\bar{x}_{y}\right)$ $\operatorname{llg} \alpha=\{ \}, \phi$

Loop: $i=1,2, \ldots n$:
Let $x_{i}=1$. Let $\phi=\left.\phi\right|_{x_{i}=1}$
(in on example $\left.\phi\right|_{x o=1}:\left(\bar{x}_{2} \vee x_{4}\right)\left(x_{3}\right)\left(\bar{x}_{4}\right)$) call $3 \operatorname{st} T_{1}\left(\phi_{x_{i}=1}\right)$.

If accepts, let $\alpha=\operatorname{old} \alpha \cup\left\{x_{i=1}\right\}, \phi=\left.\phi\right|_{\alpha}$
If rejects let $\alpha=\operatorname{old} \alpha \cup\left\{x_{i}=0\right\}, \phi=\left.\phi\right|_{\alpha} ^{\alpha}$
Output α

