Lecture 22

Today: NP, NP-completeness $\operatorname{cont}^{\prime} d$

Clanfications / Hints on HW3
(2.) Factor: Input: is a number x in decimal output: Prime factorization of x

Example: $x=60$
output: 2,2,3,5

Show: $P=N P \Rightarrow$ FACTOR has a polyfime algonthm $\operatorname{fin}|x|$)

Clarifications / Hints on HW3
(2.) Factor: Input: is a number x in decimal output: Prime factorization of x
Show: $P=N P \Rightarrow$ FActor has a polyfime algonthm (in $|x|$)
Step 1: FINDFACTOR: Input is x
output is $\left\{\begin{array}{lll}x & \text { if } & x\end{array}\right.$ is pome $~ \begin{cases}y_{1}, y_{2} & \text { st } \\ & y_{1}, y_{2} \neq 1 \text { and } \\ & y_{1} y_{2}=x \text { otherase }\end{cases}$
Show: If FINDFACTOR in polytime then FACTOR in polytime

Clanfications / Hints on HW3
(2.) Factor: Input: is a number x in decimal
output: Prime factorization of x
Show: $P=N P \Rightarrow$ FACTOR has a polyfime algonthm (in $|x|$)
(IN)
Ste f 2 : show $P=N P \Rightarrow$ FIWDFACTOR in playtime
Find a Language L in NP such that If L is in P then we can solus FINDFACTOR in poytimie (by "binary search")

Say ve want a polyromal time algonithm to solve FIND- $\frac{n}{2}-C L Q U E$

FIMD-K-CLQQE: Input undieckel srgh g on entice $x_{1} \cdots x_{n}$
 ow ondput a sbsed $v^{\prime} \leqslant u$ s.t. V^{\prime} is a clique in g
show: It $P=N P \Rightarrow F I N S-\frac{n}{2}-l$ igue is in J

Let $A=\left\{\left(g, k, V^{\prime} \subseteq v\right) \mid\right.$

* I contains a k-clige including the ratios in $\left.V^{\prime}\right\}$
g: find a $\frac{n}{2}$-chge:

1. call $A\left(g, k, r^{\prime}=\{k\},\right)$

Clanfications / Hints on HW3
(36) This is related to question 1. (P is closed under complement
Need to show:
For any L that is WP conpleve, L is NP hand
三 For any L that is $N P$-complete,
If $L \in P$ then every $L^{\prime} \in N P$ is also in P

Example: say L is CLIQUE
show $L=\overline{C L I Q U E ~ i s ~ N P ~ h a n d ~}$

(5) K-men sAT

Recall KSAT $=\left\{\phi \left\lvert\, \begin{array}{l}\phi \text { is a NENE formula }\end{array}\right.\right.$ and ϕ is satispable ξ
Example: $\phi=\left(\begin{array}{ccc}0 & 0 & 1 \\ x_{2} \vee x_{4} \vee \bar{x}_{4}\end{array}\right) \wedge\binom{0}{x_{1} \vee \bar{x}_{3}}\left(\begin{array}{ccc}1 & 0 & \left.\bar{x}_{1} \vee x_{2} \vee \bar{x}_{4}\right)\left(\begin{array}{c}1 \\ \bar{x}_{2} \\ \bar{x}_{3}\end{array}\right)\end{array}\right.$
Brute Force: Try all possible z^{n} assignments ($n=\neq x_{2}$ vars)

$$
\begin{aligned}
& \text { iff } \phi \text { hus } \quad \begin{array}{ccccc}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
\text { a sut ass } & 0 & 0 & 1
\end{array} \\
& \text { a sut-ass } \rightarrow 1010 \\
& \text { woh } s 21_{J}^{7} \rightarrow 10100 \ll \alpha=1100 \text { satisfer } \phi \\
& \begin{array}{llll}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array} \quad \text { so } \phi \in 3 S A T
\end{aligned}
$$

(5) K-mensAT: input to k min sAT is a 3 CNF formula

Recall KSAT $=\{\phi \mid \phi$ is a $3 C N E$ formula and ϕ is satispable ξ
$3-\min S A T:=\{\phi \mid \phi$ is a $3 C N E$ formula and there is an assignment α with $\leqslant 3$ 1's That satisfies $\phi\}$
Example 1: $\phi=\left(x_{2} \vee x_{4} \vee \bar{x}_{4}\right) \wedge\left(x_{1} \vee \bar{x}_{3}\right)\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{4}\right)\left(\bar{x}_{2} \vee \bar{x}_{3}\right)$
$=1$ satisfies ϕ and has $\leqslant 3$
$\alpha=1100$ satisfies ϕ and has $\leqslant 31 \mathrm{~s}$ so $\phi \in 3$ MINSNT

Example $2 \phi^{\prime}=\left(x_{1} \vee \bar{x}_{2}\right)\left(x_{2} \vee \bar{x}_{4}\right)\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right)\left(x_{4}\right)\left(\bar{x}_{4} \vee \bar{x}_{5}\right)$
$\alpha=11110$ satisfies ϕ^{\prime} so $\phi^{\prime} \in 35$ ST
But no assignment with $\leqslant 3$ 1's sutis fir ϕ^{\prime} so $\varphi^{\prime} \notin 3$ min SAT

Examples of Languages in NP
(1) Any $L \in P$ is also in $N P$

Venfier V on input (w, c) : ignore c and just run polytime alg for L on input w,
(2) CLiqUE $=\{(g, k) \mid g$ s an undirected graph containing a size $-k$ clique $\}$

Verifier V on input $((g, k), s)$:

- check that S encodes a subset $S \leqslant V$ of k vertices
- For all pairs of vertices $i, j \in V^{\prime}$ check if (i, j) is an edge in $E \quad(i . e, \quad(i, j) \in E)$

Examples of Languages in NP
(3) $\quad K-S A T=\{\phi \mid \phi$ is a satisfiable $K-C N F$ formula $\}$

Input is a Boolean formula over $x_{1} \ldots x_{n}$ in $k C N F$ form.
KCNF form: $C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$
Example: $\phi=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{2} \vee \bar{x}_{1}\right) \wedge\left(\bar{x}_{2} \vee x_{3}\right)$

Verifier V on input (ϕ, α) :
check that α is a Boolean satisfying assignment for ϕ. If yes \rightarrow accept, otherwise \rightarrow reject

Examples of Languages in NP
(4) HAMPATH $=\{(g, s, t) \mid g$ is a directed graph containing a Hamilton path (visits all vertices once) from s to $t\}$

Example

Verifier V on input $((g, s, t), p)$:
Check if p encodes a Hamiltonian path from s to t. If yes \rightarrow accept; othermse \rightarrow reject

NP-Completeness
Definition Language A is polynomial-time (mapping) reducible to B (written $A \leqslant p B$) if there is a polynomial-time computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that $w \in A \Leftrightarrow f(w) \in B$

Definition

- A language $B \subseteq\{0,1\}^{*}$ is NP-hard if for every $A \in N P$ there is a polynomial time reduction from A to $B\left(A \leqslant_{p} B\right)$

NP-Completeness
Definition Language A is polynomial-time (mapping) reducible to B (written $A \leqslant p B$) if there is a polynomial-time computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that $w \in A \Leftrightarrow f(w) \in B$

Definition

- A language $B \subseteq\{0,1\}^{*}$ is NP-hard if for every $A \in N P$ there is a polynomial time reduction from A to $B(A \leqslant p B)$
- $B \subseteq\{0,1\}^{x}$ is NP-complete if: (i) B is in NP and
(ii) B is NP-hard

NP - completeness

For every $k \geqslant 3$ 3-SAT is NP-complete
(Proot Next week)

To shar another canguage is np compleve we gust need to show:
(1) $L \in N P$
(2) Show 3SAT $\leqslant \rho L$ $f \uparrow$

NP-completeness via Reductions

Theorem CLIQUE is NP-complete

$$
C l i q u e=\left\{\begin{array}{l|l}
(g, k) & \underset{a c l i g n g}{g} \text { contains }
\end{array}\right.
$$

Proof (2 steps)
(i) CLQUE is IN NP (we already showed this)
(ii) CLIQUE IS NP-HARD: Need to show 3SAT \leqslant_{p} CLIQUE

$$
3-S A T \leqslant p \text { CLIQUE }
$$

Example
Let $\phi=\underbrace{\left(x_{1} \vee x_{2}\right)}_{c_{1}} \wedge \underbrace{\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right.}_{c_{2}}) \wedge(\underbrace{x_{1} \vee \bar{x}_{3} \vee x_{4}}_{c_{3}}) \wedge \underbrace{(\underbrace{}_{1} \bar{x}_{1} \bar{x}_{4})}_{c_{4}}$? \quad h clauses \quad here $m=4$
$f: \phi \rightarrow(G=m)$
$f: \phi \longrightarrow\left(g_{\Phi}, k=m\right)$

edge between 2 vertices if they are in different clause groups and if their associated literals are consistent
proc $k=m$ (the number of clauses in ϕ)

$$
3-S A T \leqslant p \text { CLIQUE }
$$

Example
Let $\phi=\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}, \vee \overline{x_{4}}\right)$

edge between 2 vertices if they are in different clause groups and if their associated literals are consistent
$\alpha: x_{1}=1, x_{2}=0, x_{3}=0, x_{4}=0$ satisfies ϕ corresponding 4 -clique in red

$$
3-S A T \leqslant p \text { CLIQUE }
$$

Example
Let $\phi=\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \bar{x}_{3}\right)$

edge between 2 vertices if they are in different clause groups and if their associated literals are consistent

$$
x_{1}=1 \quad x_{3}=0 \quad x_{2} \quad x_{4} \text { set any way y }
$$

We showed:

$$
f: \phi \quad \longrightarrow\left(g_{\phi}, k\right)
$$

such that $\phi \in 3 S A T \Leftrightarrow\left(g_{\phi}, k\right) \in C L(Q U E$
correctness: She
(1) If $\phi \in 3$ SAT $\left(\phi\right.$ is satishable) $\rightarrow\left(g_{p}, k\right)$ has a k-clyue
(2) If $\left(g_{\varphi}, k\right)$ has a k-clive $\rightarrow \phi$ is sat.

NP-completeness via Reductions
Theorem HAMPATIt is NP-complete
Proof

1. HAMPATH in NP (already did this)
2. We will show 3SAT \leqslant PHAMPATH (and thus HAMPATH is NP-hard)

Let $\phi=\left(a_{1} \vee b_{1} \vee c_{1}\right) \wedge\left(a_{2} \vee b_{2} \vee c_{2}\right) \wedge \ldots \wedge\left(a_{m} \vee b_{m} \vee c_{m}\right) \quad$ each a_{i}, b_{i}, c_{i} is a literal.
$f: \phi \rightarrow\left(g_{\phi}, s, t\right)$

HAMPATH $=\left\{(g, s, t) \left\lvert\, \begin{array}{l}\text { Cis a directed graph } \\ \text { with a hamiltonich path }\end{array}\right.\right.$ (units every vertex in g exactly once) from s to t ?

Let $\phi=\underbrace{\left(x_{1} \vee x_{3} v \bar{x}_{4}\right)}_{c_{1}} \wedge(\underbrace{\left.x_{2} \vee \bar{x}_{3} \vee x_{4}\right)}_{c_{2}} \wedge(\underbrace{\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right)}_{c_{3}}$
$n-\#$ vars $=4$
$f: \phi \rightarrow\left(g_{\phi}, s, t\right)$
$m=\#$ clauses $=3$
$g_{\phi}:$

(c.)
(cz)
(C_{3}

Let $\phi=\underbrace{\left(x_{1} \vee x_{3} v \bar{x}_{4}\right)}_{c_{1}} \wedge(\underbrace{\left.x_{2} \vee \bar{x}_{3} \vee x_{4}\right)}_{c_{2}} \wedge(\underbrace{\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right)}_{c_{3}}$
$n-\#$ vars $=4$
$f: \phi \rightarrow\left(g_{\phi}, s, t\right)$
$m=$ \# clauses $=3$
$g_{\phi}:$

Let $\phi=\underbrace{\left(x_{1} \vee x_{3} v \bar{x}_{4}\right)}_{c_{1}} \wedge(\underbrace{\left.x_{2} \vee \bar{x}_{3} \vee x_{4}\right)}_{c_{2}} \wedge(\underbrace{\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right)}_{c_{3}}$
$n-\#$ vars $=4$
$f: \phi \rightarrow\left(g_{\phi}, s, t\right)$
$m=$ \# clauses $=3$
$g_{\phi}:$

Let $\phi=\underbrace{\left(x_{1} \vee x_{3} v \bar{x}_{4}\right)}_{c_{1}} \wedge(\underbrace{x_{2} v \bar{x}_{3} v \bar{x}_{4}}_{c_{2}}) \wedge(\underbrace{\bar{x}_{1} \vee x_{2} \vee x_{3}}_{c_{3}})$
$f: \phi \rightarrow\left(g_{\phi}, s, t\right)$
$n-t$ vars $=4$
$m=$ \# clauses $=3$
$g_{\phi}:$

claim ϕ is satisficible iff g_{ϕ} has a Hamiltonian path from s to t $\alpha: \underbrace{x_{1}=1}_{c_{1}} x_{2}=0 \underbrace{x_{3}=1}_{c_{3}} \underbrace{x_{4}=0}_{c_{2}}$

