
Lecture 21

Oday : NP
,

NP - completeness

Some Problems in P

① S -t connectivity : gain graph 9
,
and 2 vertices gt

does there exist a path
from s to t ?A B

'

"""÷÷[f✗ A •

a.
b.

Naive sow : try all possible paths ~ n ! paths
runtime - n ! > zn ☒ IF

Belter sow : Ocntm) n= # vertices

m= # edges

Some Problems in P

⇐motor

③ Primes : gvien ✗ in binary , is ✗ prime ?

Macie alg : try to divide ✗ by 2,3, 4, . -
- .

,
X - I

1Runtime : - ✗ steps

= exponential in 1×1

runtime of

Highly Nontrivial alg : Primes c- P brute force

algorithm
is OCX)

Ocx) is exponential
in 1×1

Some Problems in P

③ All Regular , CEL
's are in P

④ graph connectivity :

given g ,
is there a path between

eieypaiqr of vertices
in g ?

④ Linear Programming :

gwen
Chian set of constraints and

linear objeehil function,
Find

optimal solution Coen R)

⑥ perfect match in : gwen g,
does 3- a perfect matching ing ?

Perfectmaochingcontold I

• • • •

DO

•
•

••

g : • •

•

00 00

So g
has a PM

•

÷:*
,

perfectmafching.com#. I

•

•

o e

°
⑥

•

°

this g has no PM
.

NP-wknis-teas.edu Needle in Haystack?

Many of
the problems we are interested in are questions

about

searching for
.

a solution in a huge (exponential sized) set of possible solutions .

Example :

① Does g have
a clique of size ¥ ?

② Hamiltonian Path HAMPATH (g. St)

• 8 • ←
A path from s tot that

G :
F &

visits every vertex

• > •
•

exactly once
•

•
I

$
•

b-

NP-wkn-is-eas-ndanee.dk in Haystack?

Many of
the problems we are interested in are questions

about

searching for
.

a solution in a huge (exponential sized) set of possible solutions .

Example :

① Does g have
a clique of size ¥ ?

② Hamiltonian Path

In these examples it is always easy to verify a solution

But sometimes it is hard to find a solution

what characterizes NP is that it is always easy to
verify a solution tout of ~zn potential solutions)

what characterise

the (even more Famous) class NP

DINI NP = { LI L is a language decided by a Nondeterministic
TM running in polynomial time }

pdyt.me : runtime is 0 (nk) for some 1<>-0

the (even more Famous) class NP

Detn NP = { LI L is a language decided by a Nondeterministic
TM running in polynomial time }

Equivalent Defn of NP

A verifier for Language Le { 0,13¥ is an algorithm
L= { w I VCW

,
c) accepts } where c is an additional

string that we call a certificate or proof

A verifier is polynomial - time if it runs in time

polynomial in IWI .

* Note that if A is a poly time verifier then ICI must

also be polynomial in IWI .

De_fn2 NP = { L l L has a polytime verifier}

Equivalence Between DefNs 1 and 2

L
,

= { Ll L is accepted by a Nondeterministic poly time algorithm }

Lz = { L l L has a polytime verifier}

① L c- Lz ⇒ LE L
,
:

Let Algorithm A be verifier for L running in time nk

Nondet TM N : on input W , lwtn

Non deterministically select c, 14<-8 nk

Run V on CW
,
c)

If V accepts lw, c) , accept , otherwise reject

Equivalence Between DefNs 1 and 2

L
,

= { L l L is accepted by a Nondeterministic poly time algorithm }

Lz = { L l L has a polytime verifier}

② L c- L
,
⇒ LE Lz :

Let N be a Nondeterministic TM accgsting L and running
in time nk

Verifier A on CW
,
c) ?

Simulate N on W
,

where c is a description of the

Nondeterministic choices to make at each step

If this computation path (described by c) accepts
then accept CW

, c) ; otherwise reject

Examples of Languages in NP

① Any LEP is also in NP

Verifier ✓ on input CW
, c) : ignore c and just

run polythene alg for L on input W , j

② CLIQUE Cg , K) . 9=14 E) Ntn

gverifier V on input (w -

- (g, k) , c) :

• check that c encodes a subset V'ev of g
k vertices (g, 1<=3)

• For all pairs of vertices
i,j c- V

'

check if
n=6

Ii ,j) is an edge in E (i.e
,
Ii,j- E)

i 2 3 4 5 G

c : ftp.

AÉyM . 4-cotorprobem:

K-coloring Problem
A- shgh can be 4-colored
iff it is planar .Input Cf,

K)

accept iff g has
a proper K

- coloring

we know
°

• If g has a K-Clyne

then it refines
> K colors:^* .

8¥
.

Note on encodings of a graph

g = (V
,
E)

"

• •i V={ 1,33
,
4,53

Non
5
•

03

@

4

2 standard encodings

1. Adjacency List : List all edges
m . Zlogn

⇐ Ñ . Zlogn
{ (1,27 , 12,3), (1,3) , (5,234,414,4) } ←

A- edges in g
I 2 3 4 5

z . Adjacency Matrix I p p p o o

2 8 U I 0 I

3 p , q p o

MHD :| Iff Ci,j)eE
14×14 matrix

4 O O p f p

5 O P O I I n3

Examples of Languages in NP

① Any LEP is also in NP

Verifier ✓ on input CW
, c) : ignore c and just

run polythene alg for L on input W .

③ CLIQUE = { (g , k) I g is an undirected graph containing a site - K clique}

Ventiervoninput (19,14 ,
s) :

• check that 5 encodes a subset Sev of

K vertices

• For all pairs of vertices
i,j c- V

'

check if

Ii ,j) is an edge in E (i.e
,
Ii,j- E)

③ K- SAT

Examples of Languages in NP

③ K - SAT = { 01 1 10 is a satisfiable K- CNF formula }

Input is a
Boolean formula over ×

,
. .
- Xn in KENF form .

Kent form : C
,

n Cz r - - - ^Cm

Where each C
,
is an OR of Ek literals

-

Example : = (×
, vizvxs) ^ (Xsv ✗ 4) ^ (INI,)^fXzvXs)

& is satisfiable if there is a 0/1 assignment ✗ E { 0,13h

the variables of 0 such that 10 Ca) = I

4--0 Ego
✗5- I

xy=o satisfies of

IX. v7
,
u xD
-

always satisfiable

(x
,
vx

,
✓ ✗

y) I Yy):

Examples of Languages in NP

③ K - SAT = { 01 1 10 is a satisfiable K- CNF formula }

Input is a
Boolean formula over ×

,
. .
- ✗n in KENI

: form
.

KCNF form : C
,

n Cz r - - - ^Cm

Example : = (Xiv Xiv B) ^ (✗sv ✗ 4) ^ (III,)^fXzvXs)
is satisfiable if there is a 0/1 assignment ✗ E { 0,13h

to the variables of 01 such that 0/1×7=1

Let 4 =

4--1,4--0,4--1 , Xy =/ . Of is satisfiable since (2) =)

u ✓ - ✓

Example 2 § :(X.vn/z)Cx-,vXz)(XjvXyvXz)(Xz)fI-yv
µ

'

O
o 0

this is unsatisfiable .

(check all 24 assignments)
✓ \

✗5- 1 XII Xy :O

Examples of Languages in NP

③ K - SAT = { 01 1 10 is a satisfiable K- CNF formula }

Input is a
Boolean formula over ×

,
. .
- ✗n in KENI

: form
.

KCNF form : C
,

n Cz r - - - ^Cm

Example : = (Xiv Xiv B) ^ (Xsv ✗ 4) ^ (Ii I,)^fXzvXs)

verifier on input lol
,
xD :

check that 2 is a Boolean satisfying assignment
for 01 . If yes → accept , otherwise -0 reject

Examples of Languages in NP

④ HisMPSTH = {Cgs, t) / g is a directed graph containing a Hamilton path
(visits all vertices once) from s to t }

Examples %÷←÷¥÷
Verifier V on input 1cg, s, t), p) :

check if p encodes a Hamiltonian path from s to t
.

If
yes → accept ; otherwise → reject

The Ubiquity of NP

→ It turns out there are thousands of problems in NP ?

→ Many NP problems are fundamental in their respective
areas of study

→ BIG QUESTION : P ?= NP

NP - completeness
Cook (my

advisor) and independently Levin established

in 1970's that certain problems in NP (called NP-complete languages)
whose

individual complexity as the entire class of all NP problems .!

For Example 3-SAT is NP-complete which implies that
if there

is a polytime algorithm for
3- SAT them all languages in NP are

in P
.

To formalize NP - completeness we need the Notion of a

polynomial-time reduction .
This is just like the reductions we defined

in previous section on computability , but Now we require that the
reduction is polynomial-time computable.

\

NP - Completeness

Definition Language A is polynomial-time (mapping) reducible to
B (written A =p B) if there

is a polynomial-time computable
function f : si →Et such that wet ⇒ flute B

f
• *

A
•

B
f

boo

Definition
• A language B a- { 0,13¥ is NP - hard if for every AENP there

is a polynomial time reduction from
A to B (A Ep B)

\

NP - Completeness

Definition Language A is polynomial-time (mapping) reducible to
B (written A =p B) if there

is a polynomial-time computable
function f : St →Et such that wet ⇒ flute B

f
• *

A
•

B
f

boo

Definition
• A language B a- { 0,13¥ is NP - hard if for every AENP there

is a polynomial time reduction from
A to B (A Ep B)

• Be { 0,17 is NP-complete if : d) B is in NP and

(ii) B is NP-hard

theorem (Cook - Levin) 3- SAT IS NP-COMPLETE

• We will prove look - Levin Theorem Next week
.

• We currently cannot show Pt NP ,

and therefore we

don't know if 3- SAT is in P or not
.

• Best evidence that
a problem in NP is computationally

infeasible (not in P) is by showing it
-

is NP-complete .

• Next : Prove other Languages are NP-complete vice reductions .

(Analogous to : Proving other Languages
Not decidable

,

once we have one undecidable language)

