Lecture 21

Today: NP, NP-completeness

Some Problems in P
(1) St connectivity: Given graph g, and 2 vertices s, t does there exist a path
 from s to t ?

Naive solw: try all possible paths $\sim n$! paths runtime $\sim n!>2^{n}$ Better sow: $0(n+m)$ $n=\#$ vertices $m=\#$ edges

Some Problems in P
(2) Primes: given x in biñary, is x prime?

Naice aly: try to dindl x by $2,3,4, \ldots, x-1$

$$
\begin{aligned}
\text { Runtime : } & \sim x \text { steps } \\
& =\text { exporential in }|x|
\end{aligned}
$$

Hishy Nontnvial als: Promes $\in P$

runtime of bute force afonthm is $O(x)$
$O(x)$ is exponentical in $|x|$

Some Problems in P
(3) All Regular, CFL's are in P
(4) graph cornecturity:
given g, is there a path between even pair of vertices in g ?
(5) Linear Programining:
gen inion set q constraints and lineman objective function, Find optimal solution (over \mathbb{R})
(6) perfect matchin: given g, dues \exists a perfect matching ing?

Perted marching cont'd

So g has a PM

Perfed matching cont'd

this g has no PM.

NP: When is it easy fo Find a Needle in Haystack?
Many of the problems we are interested in are questions about searching for a solution in a huge (exponerrial sized) set of possible solutions.

Examples:
(1) Does 9 have a clique of size $\frac{n}{2}$?
(2) Hamiltonian Path $\operatorname{HAmpath}(g, s, t)$
$g:$

\longleftarrow A path from s to t that visits every vertex exactly once

NP: When is H easy to Find a Needle in Haystack?
Many of the problems we are interested in are questions about searching for a solution in a huge (exponential sized) set of possible solutions.

Examples:
(1) Does g have a clique of size $\frac{n}{2}$?
(2) Hamiltonian Path

In these examples it is always easy to verify a solution But sometimes it is hard to find a solution

What characterizes NP is that it is always easy to verify a solution (out of $\sim z^{n}$ potential solutions) What characteriz

The (even move Famous) class NP

Defn1 NP $=\{L \mid L$ is a language decided by a Nondeterministic TM running in polynomial time $\}$
podytime: runtime is $O\left(n^{k}\right)$ for some $K \geq 0$

The (even more Famous) class NP

Defn1 NP $=\{L \mid L$ is a language decialed by a Nondeterministic TM running in polynomial tine $\}$
Equivalent Def of NP
A verifier for Language $L \subseteq\{0,1\}^{*}$ is an algorithm
$L=\{w \mid V(w, c)$ accepts $\}$ where c is an additional string that we call a certificate or proof
A verifier is polynomial-time if it runs in time polynomial in $|w|$.

* Note that if A is a polytime verifier then $|d|$ must also be polynomial in $|w|$.

Defnz NP $=\{L \mid L$ has a polytime verifier $\}$

Equivalence Between Defns 1 and 2
$\mathscr{L}_{1}=\{L 1 L$ is accepted by a Nondeterministic polytime algorithm $\}$ $\mathscr{L}_{2}=\{L \mid L$ has a polytime verifier $\}$
(1) $L \in \mathscr{L}_{2} \Rightarrow L \in \mathscr{L}_{1}:$

Let Algorithm A be verifier for L running in time n^{k} Nondet $T M N$: on input $W,|W|=n$

Nondeterministiccilly select c, $|c| \leq n^{k}$
Run V on (w, c)
If V accepts (w, c), accept, otherwise reject

Equivalence Between Defers 1 and 2
$\mathscr{L}_{1}=\{L 1 L$ is accepted by a Nondeterministic polytime algorithm $\}$ $\mathscr{L}_{2}=\{L \mid L$ has a polytime verifier $\}$
(2) $L \in \mathscr{L}_{1} \Rightarrow L \in \mathscr{L}_{2}$:

Let N be a Nondeterministic TM accepting L and running in time n^{k}

Verifier A on (w, c):
Simulate N on w, where c is a description of the Nondeterministic choices to moke at each step
If this computation path (described by c) accepts then accept (w, c); otherwise reject

Examples of Languages in NP
(1) Any $L \in P$ is also in $N P$

Venfier V on input (w, c) : ignore c and just run polytime alg for L on input w.
(2) CLique $(g, k) . \quad g=(V, E) \quad|V|=n$

Verifier V on input $(W=(g, k), c)$:

- check that c encodes a subset $V^{\prime} \leqslant V$ of k vertices
- For all pairs of vertices $i, j \in V^{\prime}$ check if

$$
n=6
$$

(i, j) is an edge in $E \quad(i . e, \quad(i, j) \in E)$

Another example.
K-coloring Problem
Snout (g, k)

4-color Problem:
a greg can he 4-colored iff it s planar.
accept tiff g has a proper k-coloring
we know

If g has a k-cligue then it requires $\geqslant k$ colors

Note on encoding of a graph

$$
\begin{gathered}
g=(V, E) \\
|V|=n
\end{gathered}
$$

$$
V=\{1,33,4,5\}
$$

2 standard encodings

1. Adjacency 4 st: List all edges

$$
\{(1,2),(2,3),(1,3),(5,2),(5,4),(3,4)\} \quad m_{\text {Hedges in } g} \cdot 2 \log n \leqslant n^{2} \cdot 2 \log n
$$

2. Adjacency Matrix $|v| x|v|$ matrix

1				2	3
1	4	5			
	1	1	1	0	0
2	1	1	1	0	1
3	1	1	1	1	0
	0	0	1	1	1
	0	1	0	1	1

$$
M(i, j)=1 \text { if }(i, j) \in E
$$

$$
n^{2}
$$

Examples of Languages in NP
(1) Any $L \in P$ is also in $N P$

Venfier V on input (w, c) : ignore c and just run polytime alg for L on input w,
(2) CLiqUE $=\{(g, k) \mid g$ s an undirected graph containing a size -k clique $\}$

Verifier V on input $((g, k), s)$:

- check that S encodes a subset $S \leqslant V$ of k vertices
- For all pairs of vertices $i, j \in V^{\prime}$ check if (i, j) is an edge in $E \quad(i . e, \quad(i, j) \in E)$
(3) $k-S A T$

Examples of Languages in NP
(3) K-SAT $=\{\phi \mid \phi$ is a satisfiable K-CNF formula $\}$

Input is a Boolean formula over $x_{1} \ldots x_{n}$ in $k . C N F$ form.
KCNF form: $\quad C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$
where each C_{i} is an $O R$ of $\leqslant k$ literals
Example: $\phi=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{2} \vee \bar{x}_{1}\right) \wedge\left(\bar{x}_{2} \vee x_{3}\right)$
ϕ is satisfiable if there is a $0 / 1$ assignment $\alpha \in\{0,1\}^{n}$ the variables of ϕ such that $\phi(\alpha)=1$
$x_{1}=0 \quad x_{2}=0 \quad x_{3}=1 \quad x_{4}=0 \quad$ satispes ϕ

$$
\left(x_{1} \vee \bar{x}_{1} \cup x_{3}\right)
$$

uluy satishäble

$$
\left(x_{1} \vee x_{1} \vee x_{4}\right) \equiv\left(x_{1} \vee x_{y}\right)
$$

Examples of Languages in NP
(3) $\quad K-S A T=\{\phi \mid \phi$ is a satisfiable $K-C N F$ formula $\}$

Input is a Boolean formula over $x_{1} \ldots x_{n}$ in $k C N F$ form.
KCNF form: $C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$
Example: $\phi=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{2} \vee \bar{x}_{1}\right) \wedge\left(\bar{x}_{2} \vee x_{3}\right)$
ϕ is satisfiable if there is a $0 / 1$ assignment $\alpha \in\{0,1\}^{n}$ to the variables of ϕ such that $\phi(\alpha)=1$
Let $\alpha=x_{1}=1, x_{2}=0, x_{3}=1, x_{4}=1 . \quad \phi$ is satisfiable since $\phi(\alpha)=1$
Example 2 $\boldsymbol{j}^{\prime}:\left(x_{1} \vee x_{2}\right)\left(\bar{x}_{1} \vee x_{2}\right) \sqrt{\left(\bar{x}_{3} \vee x_{4} \vee \bar{x}_{2}\right)}\left(\begin{array}{c}\left.x_{3}\right)\left(\bar{x}_{4} \vee \bar{x}_{2}\right) \\ 0 \\ 0\end{array}\right)$ this is unsatisfiable. (check all 2^{4} assignments)

$$
x_{3}=1 \quad x_{2}=1 \quad x_{4}=0
$$

Examples of Languages in NP
(3) $\quad K-S A T=\{\phi \mid \phi$ is a satisfiable $K-C N F$ formula $\}$

Input is a Boolean formula over $x_{1} \ldots x_{n}$ in $k C N F$ form.
KCNF form: $C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$
Example: $\phi=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{2} \vee \bar{x}_{1}\right) \wedge\left(\bar{x}_{2} \vee x_{3}\right)$

Verifier V on input (ϕ, α) :
check that α is a Boolean satisfying assignment for ϕ. If yes \rightarrow accept, otherwise \rightarrow reject

Examples of Languages in NP
(4) HAMPATH $=\{(g, s, t) \mid g$ is a directed graph containing a Hamilton path (visits all vertices once) from s to $t\}$

Example

Verifier V on input $((g, s, t), p)$:
Check if p encodes a Hamiltonian path from s to t. If yes \rightarrow accept; othermse \rightarrow reject

The Ubiquity of NP
\rightarrow It turns out there are thousands of problems in NP?
\rightarrow Many NP problems are fundamental in their respective areas of study

$$
\rightarrow \text { BIg QUESTION: } P \stackrel{?}{=} N P
$$

The \$1M question

The Clay Mathematics Institute Millennium Prize Problems

1. Birch and Swinnerton-Dyer Conjecture
2. Hodge Conjecture
3. Navier-Stokes Equations
4. P vs NP
5. Poincaré Conjecture
6. Riemann Hypothesis
7. Yang-Mills Theory

NP-completeness
Cook (my advisor) and independently Levin established in 1970's that certain problems in NP (called NP-complete languages) whose indindual complexity as the entire class of all NP problems! For Example $3-S A T$ is NP-complete which implies that if there is a polytime algonthm for $3-S A T$ then all languages in NP are in P.

To formalize NP-completeness we need the Notion of a polynomial -time reduction. This is just like the reductions we defined in previous section on computability, but Now we require that the reduction is polynomial-time computable.

NP-Completeness
Definition Language A is polynomial-time (mapping) reducible to B (written $A \leqslant p B$) if there is a polynomial-time computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that $w \in A \Leftrightarrow f(w) \in B$

Definition

- A language $B \subseteq\{0,1\}^{*}$ is NP-hard if for every $A \in N P$ there is a polynomial time reduction from A to $B\left(A \leqslant_{p} B\right)$

NP-Completeness
Definition Language A is polynomial-time (mapping) reducible to B (written $A \leqslant p B$) if there is a polynomial-time computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that $w \in A \Leftrightarrow f(w) \in B$

Definition

- A language $B \subseteq\{0,1\}^{*}$ is NP-hard if for every $A \in N P$ there is a polynomial time reduction from A to $B(A \leqslant p B)$
- $B \subseteq\{0,1\}^{x}$ is NP-complete if: (i) B is in NP and
(ii) B is NP-hard

The Cook/Levin theorem was independently proved by Stephen Cook and Leonid Levin

- Denied tenure at Berkeley (1970)
- Student of Andrei Kolmogorov
- Invented NP completeness (1971) - Seminal paper obscured by
- Won Turing Award (1982) Russian, style, and Cold War \triangle
- We will prove Look-Levin Theorem Next week.
- We currently cannot show $P \neq N P$, and therefore we doit know if 3-SAT is in P or not.
- Best evidence that a problem in NP is computationally infeasible (not in P) is by showing it is $N P$-complete.
- Next: Prove other Languages are NP-complete via reductions.
(Analogous to: Proving other Languages not decidable, once we have one undecidable language)

