
Lecturer

• HW 3 Due tomorrow (Tues Nov 21
,
11:59 am)

• Today : Wrap up on
TMS and computability

start of last topic : complexity Theory ,

P
,

NP

computability wrapup

1. Tms : general model
of computation (church -Turing thesis)

stronger versions
: Multi - tape ,

Nondeterministic

2
.

Decidable (Recursive) Languages
Regular

Examples : all Regular
Languages,

all CFL 's

CFL's

Recognizable (
Re) Languages Decidable

examples : All decidable languages HALT, Atm Recognizable

3
.

Closure properties of decidable/recognizable is r

4.
.

Undecidable / Unrecognizable Languages

Method Of Diagonal ization (D Not r-e.)

Reductions

The Languages we showed are
undecidable were all about

properties of TMS .

What about other more natural functions ?

Here is a sample of some
other (famous) undecidable problems :

Same questions (HALT, Aim) are also
undecidable in

any
other model of computation , e.g . Python programs, quantum

computers , etc .

Hilbert 's Tenth problem is
undecidable (1900)

Input : a diophantine equation (polynomial equation
with integer coeff's)

Example : 3×2 - 2xy -
2-3 + 5×242=0

Output : a sow over integers , or
"unsolvable

"

Undecidability of First order Logic (Hilbert 's C- Ntscheidvngsproblem)

^

,

④ Data compression

given a
-

string s c- {0,129
,
find shortest program

that outputs s

⑤ group theory
1

given a (finitely presented) group g
Is g finite ?

Is g simple?
Is 9 comma techie

} all undecidable
⑥ Physics - spectral gap (2015)

(difference between ground state * first excited state)
sci . American Oct 20cg)

many subsequent undecidable problems in quantum physics

Complexitytheory

We saw that certain languages are undecidable - -
even with unbounded resources (time

, memory)
we cant solve these problems in the worst case

But even if a problem is decidable it may take

an enormous amount of time (memory , so if
skill may not be solvable in practice

complexity theory
: the study of important /central

problems and the
amount of resources required

to solve them .

time
, space ,

randomness
,
parallel cnputahin

,

quantum computer

some Examples

① Matrix Multiplication : gin 2 nxn matrices
Mi
,
Mz

How much time (elementary plus /trines operations
) to output M

,

• Me ?

② Prime : givin a number ✗ in binary , is it prime ?

③ Factoring : gien ✗ in binary ,
output prime factorization

④ Clique : given a graph g on n vertices, and a number K,
does g contain a clique of site K ?

⑤ Sudoku : input nxn puzzle , output a solution

e-x-ama.ms É=÷=:I! A
931 9-32 93] £ by

,
b,, by

Entry aid of Mink :

= ai , b. it Aizbzi t.is b> i } 01N operations

Runtime of this obvious alg == ri . n
a ←

ñ entries 0in) operations each

Q . Is there an alg running in n' time ?

Best known R2" t.me

Primality

say ✗ = 23W decimal

bring

there is a randomised dlg .

that

runs very fast .

Open for a long time : is there a fast

deterministic veg Kinane Ñ, n-gfej.tn)←
yes !

*

← same

7

Brute Force : say E- 3 then

g has a 3- Clyne = g contains a d

to sole : toy all possible subsets ssv
,
1st. }

(3) ~ n
'

K - elise : (E) ←

Timeconplexity

A step of a TM is a single transition of the TM
on an input

the time complexity of a TM is a function

(denoted ten) or fcn)) that measures the worst-case

number of steps M takes (before halting) on

any input of length n

Time complexity
,
Big -0 Notation

Big -0 : ignore everything except the dominant growth
term

, including constant factors

Defiz For any 2 functions fcn)
, gcn)

f- (a) =0CgCnD if 7C , no S.t.vn > no f- (a) ← c- gcn) .

Examines
← for)=4nt to gcn)=n

4h 1- 10 = Ocn)

② n' +3Mt 4 = 01h2) fcn) =o(gon))

③ 2
"
t n
>

= ① (2)

④ rflogntloglogn = 0(n4ogn)

Time complexity
,
Big -0 Notation

why do we care about asymptotic
(Big -0) growth ?

• We want to
estimate the runtime of an algorithm .

Human differences in hardware Implementation
can

lead to differences
in runtime

.

Example : register
side
,
caching

,

etc
.

• Analyzing Runtime
can be cumbersome - bij -0

hi.de a lot of unnecessary details

Example of how Big -0 Makes things Easier

M on input w

scan across tape until we see a 0 or I Ocn) steps

If None found → halt and accept 04) steps

01h) loops
* me found ,

commie scanning moi , a ocn , steps}matching 0 or I found

04) steps
If none found reject

0W cross off that symbol and repeat
①G) steps

so total worst case runtime
on W

,

lwlsn is

(Ocn) +041+04+04) to Cn)) . ocn) = Ocn)oOCn) --01nF)

The Famous Class "

P
"

Dein Let t.IN → IN Ct = runtime)

TIME (tcn)) = { L l L is a language decided by a

octant) - time TM }

Dein t : IN → IN is polynomial if tcn) - Of nk) for some 1<>-0

EI ten)=n? ten)=n
,

ten)= nlogn are polynomial
(Ecn) - ribs" or ten)=zn are not polynomial .)

Deth P = { LI L is a language decided by a

TM running in polynomial time }

* We think of problems in P as those that have

relatively efficient algorithms .

The Famous Class "

P
"
: Discussion /Motivation

Q1 : why polynomial time ? Why not linear time or
quadrate time ?

Valid point .

If some program runs in Ñ°°° time that certainly
isn't feasibly solvable

If some problem ☒
P then we can say

for sure that

it is infeasible
to soke in the worst-case

Typical polytime algs actually
run in ✗me nor Norris

so placing
a problem in P usually means it is hopeful

that it can be Joked fairly efficiently
still

,
it is important after placing a problem in

P
,

to find

a truly fast (ie . ocn) or ocnlognl time) algorithm

The Famous Class "

P
"
: Discussion /Motivation

Q2 : Tms are so_ slow . Why don't we define
" P

"

for a

better model of computation

Also good point . Really we want to consider a more

realistic model
like multitope TMS, or random-access

machines
.

But the simulation of these by ordinary Tms is

pstynonued time ,
so if some problem has a

pdyt.me alg in some other models it will

usually also had a pity time TM algorithm

←
one big excgstrm :

quantum computers

The Famous Class "

P
"
: Discussion /Motivation

Q3 : why worst - case pentane ?

Another good point .

Just because a problem
-

is hard on some inputs
,

this isn't the whole story .

- It may be very easy
to sole m

'

typical
'

inputs

Example : whole field
of machine learning , chatgpt

- It may
be easy to get

a very good approximation
in polytime even if sowing optimally

-

is not in P

again , understanding worst case complexity is a starting point
ideal : sole exactly in poly time . If not possible

,
see if

efficient on avg , or easy to approximate .

Some Problems in P

① S -t connectivity : gain graph g
,
find length of shortest

path from
A to F

A B

C

F#
Naive sow : try all possible paths ~ n ! paths

runtime - n ! > zn

Better sow : Ocntm) n= # vertices

m= # edges

Some Problems in P

③ Primes : gvien ✗ in binary , is ✗ prime ?

Macie alg : try to divide × by 2,3, 4, . -
- .

,
✗ -1

Runtime : - ✗ steps

= exponential in 1×1

Highly Nontrivial alg : primes c- P

Some Problems in P

③ All Regular , CEL
's are in P

④ graph connectivity :

given g ,
is there a path between

eieypaiqr of vertices
in g ?

④ Linear Programming :

gwen
Chian set of constraints and

linear objeehil function,
Find

optimal solution Coen R)

⑥ perfect match in : gwen g,
does 3- a perfect matching ing ?

perfectmaoching.com#. I

• • • •

ooo

•
•

••

g : • •

•

00 00

• •

So g
has a PM

perfectmafching.com#. I

•

•

o e

°
⑥

•

°

this g has no PM
.

