Lecture 20

- HW 3 Due tomorrow (Tues Nov 2l, 11:59 am)
- Today: Wrapup on TM and computability Start of Last Topic: Complexity Theory, P, NP

Computability Wrapup

1. TMs: general model of computation (Church-Turing Thesis) Stronger versions: Mucti-tape, Nondeterministic
2. Decidable (Recursive) Languages Examples: all Regular Languages, all CFL's Recognizable (Re.) Languages

Examples: All decidable languages HALT, $A_{\text {TM }}$
3. Closure properties of decidable/recognizable L^{\prime} s

4. Undécidable / unrecognizable Languages Method of Diagonalization (D Not re.) Reductions

The Languages we showed are undecidable were all about properties of TMs. What about other more Natural functions? Here is a sample of some other (famous) undecidable problems:
(1.) Same questions (HALT, $A_{T M}$) are also undecidable in any other model of computation, egg. python programs, quantum computers, etc.
(2.) Hilbert's Tenth proldem is undecidable (1900)

Input : a diophantine equation (polynomial equation int integer coff's) Example: $3 x^{2}-2 x y-z^{3}+5 x^{2} y^{2}=0$
Output: a sols over integers, or "unsolvable"
(3.) Undecidability of First order Logic (Hilbert's Entscheidungsproblem)
(4) Date compression

Given a string $s \in\{0,1\}^{*}$, find shortest program that outputs s
(5) group theory
given ce (finitely presented) group g
$\left.\begin{array}{l}\text { Is } g \text { finite? } \\ \text { Is } g \text { simple? } \\ \text { Is } g \text { commutative }\end{array}\right\}$ all undecidable
(6) Physics - Spectral Gap (2015)
(difference between ground state + first excited state)
Sci. American Oct zoos)
many subsequent undecidable problems in quantum physics

Complexity Theory
We saw that certain (anguages are undecidable even int unbounded resources (time, memory) we cant solve these problems in the worst case

But even if a problem is decidable it may take an enormous amount of time (memory, so it still may not be solvable in practice

Complexity Theory: the study of important/central problems and the amount of resources required to solve them.
time, space, randomness, parallel coputadion, quantum computer

Some Examples
(1) Matrix Multiplication: given a $n \times n$ matrices M_{1}, M_{2} How much time (elementary plus/times operations) to output $M_{1} \cdot M_{2}$?
(2) Prime: given a number x in binary, is it prime?
(3) Factoring: given x in birisery, output prime factorization
(4) Clique: given a graph g on n vertices, and a number k, does g contain a clique of size k ?
(5) Sudoku: input $n \times n$ puzzle, output a solution

Example: $n=3 \quad M_{1}=$\begin{tabular}{|c|c|c|c|}
\hline \& n \& \\
\hlinea_{11} \& a_{12} \& a_{13} \& \\
\hline \& a_{22} \& a_{23} \\
\hlinea_{31} \& a_{32} \& a_{33} \\
\hline

$\quad M_{2}=$

\hlineb_{11} \& b_{12} \& b_{13} \\
\hlineb_{21} \& b_{22} \& b_{23} \\
\hlineb_{31} \& b_{32} \& b_{33} \\
\hline
\end{tabular}

Entry (c, j) of $M_{1} \times M_{2}$:

$$
\left.=a_{i 1} b_{1 i}+a_{i 2} b_{2 i}+a_{i 3} b_{3 i}\right\} o(n) \text { operations }
$$

Runtime of this obvous alg $\approx \underbrace{n^{2}}_{n^{2} \text { entries }} \cdot n_{(n) \text { operations each }}$
Q. Is there an alg running in n^{2} tire?

$$
\text { Best known } \approx n^{2.2} \text { time }
$$

Prmalit.
$\sin x=23$ decimal bine

There is a randomized alg. That mons very fast

Open for a long time: is there a fast deterministic alg (runtime $n^{2}, \quad n=$ left $\left.\begin{array}{c}\text { of } x\end{array}\right)$

$$
g=
$$

Brute Force : Sa $k=3$ thew
g has a 3 -chine $\equiv g$ conterins a Δ
to sole: try all possible subsets $s \leq V,|s|=3$

$$
\binom{n}{3} \sim n^{3}
$$

k-dige: $:\binom{n}{k} \leftarrow$

Time Complexity
A step of a TM is a single transition of The TM on an input

The time complexity of a TM is a function (denoted $t(n)$ or $f(n)$) that measures the worst-case number of steps M takes (before halting) on any input of length n

Time complexity, Big-O notation
Big-O: ignore everything except the dominant growth term, including constant factors

Def'n For any z functions $f(n), g(n)$ $f(n)=O(g(n))$ if $\exists c, n_{0}$ st. $\forall n \geqslant n_{0} f(n) \leq c \cdot g(n)$.

Examples
(1.) $4 n+10=O(n)$ $f(n)=4 n+10 \quad g(n)=n$
(2) $n^{2}+3 n+4=O\left(n^{2}\right)$ $f(n)=O(g(n))$
(3) $2^{n}+n^{3}=O\left(2^{n}\right)$
(4) $n^{2} \log n+\log \log n=O\left(n^{2} \log n\right)$

Time complexity, Big-O notation
Why do we care about asymy totic (Big-0) growth?

- We want to estimate the runtime of an algontam.

However differences in hardware /implementation can lead to differences in runtime.

Example: register size, caching, etc.

- Analyzing Runtirie can be cumbersome - big -0 hider a lot of unnecessary details

Example of how Big̀-O Makes things Easier
M on input w
scan across tape until we see a or 1
If wore found \rightarrow halt and accept
If one found, contrive scanning until a $O(n)$ steps matching 0 or 1 found
If wore found reject

OW cross off that symbol and repeat

So total worst case rentime on $w, i m=n$ is

$$
(O(n)+O(1)+O(n)+O(1)+O(n)) \cdot O(n)=O(n) \cdot O(n)=O\left(n^{2}\right)
$$

The Famous Class "P"
Def Let $t: \mathbb{N}^{N} \rightarrow \mathbb{N} \quad(t$ a ruutione)
$\operatorname{TIME}(t(n))=\{L \mid L$ is a language decided by a $O(t(n))$-tine $T M\}$

Def $t: \mathbb{N} \rightarrow \mathbb{N}$ is polynomial if $t(n)=O\left(n^{k}\right)$ for some $k \geqslant 0$
Ex $t(n)=n^{2}, t(n)=n, t(n)=n \log n$ are polynomial
$\left(t(n)=n^{\log n}\right.$ or $t(n)=2^{n}$ are not polpromid.)
Defn $P=\xi L \mid L$ is a language decided by a TM running in polpwomiar tire $\}$

* We think of problems ir P as those that have relatively efficient algor tums.

The Famous Class "P": Discussion (Motivation
Q1: Why polynomial time? Why not linear tirie or quadratic time?

Valid point.
If some program rus in n^{1000} firie that certainly ts nit feasibly solvable
If some problem \& P then we can say for sure that it is infeasible to solve in the worst case

Typical polytime alas actually run in are n or n^{2} or n^{3} so placing a problem in P vsualh means it is hopeful that it can be solved fain efficeritly
still, it is important cefter p lacing a problem in P, to find a truly fast (ie. $O(n)$ or O(nlogn) time) algonthm

The Famous Class "P": Discussion (Motivation

Qz: TM are so slow. Why dorit ne define "P" for a better model of computation

Also good point. Really, we welt to consider a more realistic model like multitya $T M$, or random-access machines.

But the simulation of these by ordinary TM is polynomial time, so if some problem has a poltime alg in some other model, it will usually also have a poytime TM algorithm
one big exception: quantum computers

The Famous Class "P": Discussion (Motivation
Q3: Why worst-case runtime?
Another good point.
Just because a problem is hard on some inputs, this is nit the whole story.

- It may be very cay to sole on 'typical' inputs

Example: whole field of machine learning, chatgpt

- It may be easy to get a very good offoximation in polptime even it sowing optimalh is not in P
Again, understanding worst case complexity is a starting point ideal: Solve exactly in pohtimie. If not possible, see if efficient on avg , or easy to approximate.

Some Problems in P
(1) St connectivity: Given graph g, find length of shortest path from A to F

Nair solw: try all possible paths $\sim n$! paths runtime $\sim n!>2^{n}$
Better sol: $O(n+m)$
$m=\#$ edges

Some Problems in P
(2) Primes: given x in biñary, is x prime?

Naie aly: try to dindl x by $2,3,4, \ldots, x-1$ Runtime : $\sim x$ steps

$$
=\text { exponential in }|x|
$$

(Hishy Nontnvial als: Promes $\in P$

Some Problems in P
(3) All Regular, CFL's are in P
(4) graph cornecturity:
given g, is there a path between even pair of vertices in g ?
(5) Linear Programining:
gen inion set q constraints and lineman objective function, Find optimal solution (over \mathbb{R})
(6) perfect matchin: given g, dues \exists a perfect matching ing?

Perted marching cont'd

So g has a PM

Perfed matching cont'd

this g has no PM.

