
Lecture 19

'

Review session Friday Nov 17 4-6

HW] due Tues by Noon ( 1.2hr extension ! )



show¥
Qz : d) → cii) r dit → it

To show 4) →Cii) [show if 9- an onto

fxw g : IN→ s then

3 steps F 1-1 fxwf : s → IN ]
[① Define f

[② Shou your f is well
- defined

( its c- S , if fE$) = one element in /N)

[③ Show f is 1- I



Recap from Last week

① D= { <M> I MKM>) does not accept }
← Diagonal Language
is not me

.

Proof by diagonalRation

② D- = { am> I MKM>) halts and accepts} *< s.si

is ne.

but not recursive III.÷)then I also

③ A,µ={ LM,w> I M accepts w }
is re

.
but Not recursive



D not me .

A,m= { <mind / M accepts w} ☒ is re
,
no see.µ,n , e, no,recursive

• We saw that Atm
'

Is me. /recognizable .

Pf that Atm is not decidable :
--

Assume for sake of contradiction there is a decider N for Apu
.

We will use M to construct a decider N
'

for Ñ :

N
'

: on input <m> :

check if input
-

is a legal encoding of a TM . If not reject
otherwise Run N on TM ,

<m>)
If N accepts → accept
If N rejects → reject

since N always halts, N
'

always halts .

Also N
'

accepts 15
.
Contradiction since I is not decidable

i. Atm -

is not decidable



TMReductionsthepreuo.us
proof showing that Atm is not

smieÑnotNgdecidable is a reduction ; we showed :
so we

decidable
Atm also Not

showed decidable
a decider for Atm ⇒ a deader for Ñ

←I<
Deff Language A is TM -reducible to Language B ,

written A g- B
'

If

a decider for B ⇒ a decider for A

*Important* If d- £
,
B and B is decidable then A is decidable

If A =
,
B and A is not decidable

,
then B is Not decidable

(contrapositive)



More on Reducibilities

A language A is mapping - reducible to language B ( Asm B)

if there exists a computable function f : Et → & such that

the E* (✗ c- A ⇐ try c-B)
É

Et

eF
• f maps strings in A

to strings in B, and strings not in A to strings not in B



More on Reducibilities

A language A is mapping - reducible to language B ( Asm B)

if there exists a computable function f : Et → I such that

the E* (✗ c- A ⇐ try c-B)
q*

qtr

0.5€
• f maps strings in A

to strings in B, and strings not in A to strings Not in B

Lem_ma If A a-µB then A E
,
B

(mapping reductions are special case of Turing Reductions )



More on Reducibilities

A language A is mapping - reducible to language B ( Asm B)

if there exists a computable function f : Et → I such that

the E* (✗ c- A ⇐ try c-B)
q*

qtr

Lemond Let A Em B. Then :

① B decidable ⇒ A decidable (or equivalently, A
undecidable→ B undecidable)

② B recognizable/re ⇒ A recognizable Ine .

Lemma_ If we have A Em B
,

then we also have Ñ em B-



Ben A :

Q : To show A is Not decidable

Do I want to show ⑥
¢,) Asm ☐z for some B that -

is undecidable

•

or e) B em A
for some B that

-

is undecidable

←
correct answer

B-5nA means

(a) : If A decidable then B is decidable
so B not dec → A not dee

. ✓



E-xamplei.HN# = { LM,x> I M halts on input × }

¥1s HALT
-

is me
.

(exercise)

Lemmy Halt is not recursive/decidable

Atm -4 HALT

pNofofLemma2_ We will show

then since Atm Not decidable, this implies HALT Not decidable .

Let N be an (alleged) decider for HALT .

We will use N to create

a decider
,
N

"
for Atm

N
'

: on input vi. ×>
'

:

check if input
-

is legal encoding of a TMM, followed by ✗ ( halt if not]
Run N on input <M,

×>

If N accepts , simulate M on ✗ . Accept <Mix>
'

if simulation

accepts ; otherwise reject CM, x>

If N rejects ,
halt and reject



E-xamplei.HN# = { LM,
x> I M halts on input × }

¥1s HALT
-

is me
.

(exercise)
Note :

Lemme Halt is not recursive /decidable
this is a Turing

pnofofLemma2_ We will show Atm £7 TACT reduction but

men ,,n, µ, no, yea,awe,
µ, my,,, µ,,, no, µ,,.gg . µamgp,n,nµgn

Let N be an (alleged) decider for HALT.

We will use N to create

a decider
,
N

"
for Atm

N
'

: on input vi. ×>
'

:

check if input
-

is legal encoding of a TMM, followed by ✗ (halt if not]
Run N on input <M,

×>
If N accepts , simulate M on ✗ . Accept 4M, x>

'

if simulation

accepts ; otherwise reject CM,
x>

If N rejects ,
halt and reject

Proofofcorrectness : First, it N is a
decider for HALT then N

' will halt on all inputs.

Now for correctness : First if M halts on ×, then
N
"

just simulates

M on ✗ and does the same thing ,
so N

' will also halt + accept CM, x>
otherwise if M does not halt on ✗

,
then N will Not accept so

N
' will also halt and reject .



E-xamplei.HN#-- { LM,x> I M halts on input × }

¥1s HALT
-

is ne
.

(exercise)

Lemmats Halt is not recursive

Lemma3_ HALT is Not me .

If Halt
,
HIT both re ,

then HALT would be decidable

$ By closure property ) .
i. By Lemma 2, HALT Not r- e .

ClosmePnp:_

( If L and I are both ne
,

then they are both
recursme . )

HILT = { <mx> I M does not halt on input ✗ ]



EW. Nonempty = { am> I M accepts at least one string }
ie

. LCM) is not empty
① Nonempty is me

.

( Pt : use dovetailing)



aw Nonempty = { am> I M accepts at least one string }

① Nonempty is me
.

( Pt : use dovetailing)

③ Nonempty is
Not recursive/decidable .

Assume for sake of contradiction N is
a decider for Nonempty.

We will use N
to construct a decider

,
N
'
for HALT

N
'

: on input 4M, -1> : HALT §*
Let m

'

be a TM that on input W ,
M

'

ignores
- its input and simulates M on ✗

.

None

.ggIf M halts mx then M
'
halts and accepts

Run N on <MI>

If N accepts <m
'> → halt and accept

f :<M
,
X>
→

gyy
otherwise → halt and reject

-

*m
'

depend on M * ✗
.



LE Nonempty = { am> I M accepts at least one string }

① Nonempty is me
.

( Pt : use dovetailing)

③ Nonempty is
Not recursive/decidable .

Assume for sake of contradiction N is
a decider for HALT

we will use N
to construct a decider

,
N
'
for A

,m

N
'

: on input 4M,x> :

Let m
'

be a TM that on input W ,
M

'

" ^ "H" ✗ then mi nays and accept,
}
"

%"h%¥I¥
ignores

- its input and simulates M on ×
. M

'

accepts no strings
if mdo.es not

.

halt on ✗

Run N on <m ' >

} him
' ) Nonempty -1ft

If N accepts <M
'> → halt and accept M accepts ✗

otherwise → halt and reject

Note : This is a mapping reduction showing A
,m
Em Nonempty;

f % CM,x> → 4M'm,×)



E# Nonempty = { am> I M accepts at least one string }

① Nonempty is me
.

( Pt : use dovetailing)

③ Nonempty is
Not recursive/decidable .

③ Nonempty
= Empty

-
- { em> 1 LCM) =p }

EMPTY is Not me .

since if it were me
,

then Nonempty would
be recurs-i.ie

( for any G- Ed , If L and I are both ne
.

then both are recursive}
L TS leeway ⇒ I is recursive



Summary so far

① D is not me .

② D- is re . but Not recursive

③ Atm is me
.

but not recursive

④ Halt is re
.

but Not recursive
,
Halt is not me

.

⑤ Nonempty is ne .

but Not recursive
,
Empty is not me

.



Exampte : GQ,m= { CM , , Ma) / M ,
and Mz are TMS and LCM

,
) -- LCM)}

claim C-Qin is Not recognizable (
not r. e.) ¥⑧

PI : We will show Empty £ C-Q Empty
§

Let N be a TM for c-Qpm (Not necessarily
a decider )

.

We will construct a TM N
'
for EMPTY as follows :

N
'

:
on input <M) :

Run N on input 4M , it > where Mct is a

TM that rejects all inputs .

If N halts and accepts 04M$> then accept CM)
otherwise if N halts and rejects 4M,

Mol> then reject 4M>

f :<MY → are
,
met>



f-

If EQ -

is receive → empty is Recusingj-fEQ-r-eo-enptyls-refgn.eu
w : Js we empty ?
caput few) ☒
then if C- recursive

.

Run TM for EQ on f ( W)

accept iff TM afore GQ accepts



Exampte : GQ,m= { CM , , Ma) / M ,
and Mz are TMS and LCM

,
)=LCMz)}

What about EQTµ ? goof : mop

claim EQTµ is Not me . T.MX> →fm',m
if we will show : Aim In £4m Set . M

accepts ✗

E- →g
e-

"

them ' / = Lay,y

This is sand as constructing a mapping reduction Ñm em EQ,J
Therefore since ATM is not me

, EQTm
-

is also not me
.

A,m=
{ <Mx> I m accepts ✗ 3 Ñm={ am,×> ( Mdoesnt

accept ✗ }



B- = to

ñ=sTm
say we hail 5- mapping reduction from A to B

.

so 5- mops yes instances of A to yes instances of B
and NO " " ' ' to NO instances q B.

-

Note the
same f Ts a mgpiy reduction from A- to B-

,

So using 5- it follows that if I is r. e.
,

then I Ts r. e.

i. by contrapositive , Tf A- is not me . then
we mil

have shown that I is not me
.



Exampte : GQ,m= { CM , , Ma) / M ,
and Mz are TMS and LCM

,
) -- Lolz)}

What about
µ
?

⇐ e-

sPt we will show Atm ←m
c-Qin ,=,,

-

INCORRECT MAPPING REDUCTION :

f- :

onY.IE?jI??gnunmpnut.Iw,acceptxiefMHtsJg
Let f- (s) = CM

, Mz>

incorrect since Leno) -

is either I or §

But we dont know anything about LCM) .

So could

have M accepting w (so <Mw> c- Atm ) but LCM ) =) Et
In this case f- maps CM,w>E.Atm to a pair 4M, Me> ⇐\EQ+m



Exampte : GQ,m= { CM , , Ma) / M ,
and Mz are TMS and LCM

,
) -- Lolz)}

What about EQTµ ?
f e

.

if we will show ATM ←m EQTM →=,,
-

Let MA" be a TM that accepts every input

f- : on input s = <Mind

If s Not of the correct form reject
Else say s = CM

,
W}

construct Mz : YPnYw,acceptMaptW
Let f- G) = LMA",Mz#-

This - is correct
f :<M

,
W) → 4M

'

,
M
"> since <Min> c- Atm

MIT¥ iff FGM,W>) c- EQ,-m



Summary so far

① D is not me .

② D- is re . but Not recursive

③ A
,µ

is ne
.

but not recursive

④ Halt is re
.

but Not recursive
,
Halt is not me

.

⑤ Nonempty is ne .

but Not recursive
,
Empty is not me

.

⑥ EQ
,µ
is Not me .

, µ
Not me

.



Tips for characterizing a given Language

① Try obvious algorithms to see if you think
his

a. * "" " ""
"" " """ "

"""

÷÷÷
recursive / me .

( dovetailing technique useful to
show r_ e.)

Watch out for tricks - -if L defined based on some

property of the machine G
not a property of L)

② To prove L is
Not me

,
sometimes helpful to look at I

(If I is re .

but not recursive then L not me. )

③ get reduction
in correct direction !

④ Sometimes in reduction
,

Need to construct an intermediate

TM that ignores its own input . .



NonemptyisR.EE

Nonempty = { and I M accepts at least one

'

string ]

÷µ÷-
Assume E-- {Oil} wz

Enumerate all strip nee 0
, I

W
, we Wz Wy - -

- -
- I:¥D|•.

g-it for Nonempty :
On input CM> :

For i= 1,2, 3, - -
.

For j = 1,2, . .

,
I

Run M on Wj for i steps{ [ .

If M halts and accepts within these i steps
halt and accept


