Lecture 19

2

Since N always halts, N' always halts. Also N' accepts D. Contradiction since D is Not decidable :. Ann-is Not decidable TM Reductions

The previous proof showing that
$$A_{TM}$$
 is Not
decidable is a reduction; we showed:
a decider for $A_{TM} \implies \alpha$ decider for $\tilde{D} = A_{TM}$ also not
 $\tilde{D} = A_{TM}$

Defn Language A is TM-reducible to Language B, written $A \leq B$ if a decider for $B \implies$ a decider for A

*Important * If $A \in_T B$ and B is decidable then A is decidable If $A \in_T B$ and A is not decidable, then B is not decidable (contrapositive) More on Reducibilities

• I mays strings in A to strings in B, and strings Not in A to strings Not in B

B

More on Reducibilities

A language A is mapping-reducible to language B (A < B) If there exists a computable function $f: \Xi^* \rightarrow \Xi^*$ such that Vxe E* (xe A => f(x) eB) A В

• f mays strings in A to strings in B, and strings not in A to strings not in B

Lemma If $A \leq_{M} B$ then $A \leq_{T} B$ (mapping reductions are special case of Turing Reductions) More on Reducibilities

A language A is mapping-reducible to language B $(A \leq_m B)$ if there exists a computable function $f: \Xi^* \rightarrow \Xi^*$ such that $\forall x \in \Xi^* (x \in A \Leftrightarrow) f(x) \in B$) $\stackrel{z^*}{\longrightarrow} f$

Lemma Let A = B. Then:

B decidable ⇒ A decidable (or equivalently, A undecidable ⇒ B undecidable)
 B rewgnizable/re ⇒ A rewgnizable /r.e.

Lemma If we have $A \leq_n B$, then we also have $\overline{A} \leq_n \overline{B}$

2: To show A is not decidable

$$D = J$$
 want to show
(i) $A = B$ for some B that is undecidable
or (2) $B = M A$ for some B that is undecidable
 $Correct answer$

Example : HALT = { (x encise)
Lemma 1 HALT is n.e. (exercise)
Lemma 2 Halt is Not recursive/decidable
PROOF of Lemma 2 We will show
$$A_{TM} \leq_T HALT$$

Then since A_{TM} Not decidable, this implies HALT Not decidable.
Let N be an (alleged) decider for HALT. We will use N to create
a decider, N' for A_{TM}
N': [on imput

$$\frac{\text{Example : HATT}}{\text{Example : HATT}} = \frac{2}{3} \langle M, x \rangle / M \text{ halts on input } x \frac{3}{3}$$

$$\frac{\text{Lemma 1}}{\text{Lemma 2}} \quad HALT \text{ is not recursive/decidable.}$$

$$\frac{\text{Note : }}{\text{The since A_{TM} Not decidable, this implies HALT Not decidable.}}$$

$$\frac{\text{Note : }}{\text{The since A_{TM} Not decidable, this implies HALT Not decidable.}}$$

$$\frac{\text{Note : }}{\text{Note : }} \quad \text{Note : } \text{The since A_{TM} Not decidable, this implies HALT Not decidable.}}$$

$$\frac{\text{Note : }}{\text{Note : }} \quad \text{Note : } \text{The since A_{TM} Not decidable, the implies HALT Not decidable.}}$$

$$\frac{\text{Note : }}{\text{Note : }} \quad \text{Note : } \text{The since A_{TM} Not decidable, the implies HALT Not decidable.}}$$

$$\frac{\text{Note : }}{\text{Note : }} \quad \text{Note : } \text{The since A_{TM} Not decidable.}}$$

$$\frac{\text{Note : }}{\text{Note : }} \quad \text{Note : } \text{N$$

Proof of correctness: First, if N is a decider for HALT then N' will halt on all inputs. Now for correctness: First 'If M halts on x, then N' just simulates M on x and does the same thing, so N' will also halt raccept <M, x) Otherwise 'IF M does not halt on x, then N will Not accept so N' will also halt and reject.

Note: This is a mapping readding storing nom - m to f; <M,x> -> <M'n,x>

- () D is not r.e.
- (2) D is r.e. but Not recursive
- 3 ATM is r.e. but not recursive
- (4) Hult is re but not recursive, Half is not re. (5) Nonempty is r.e. but not recursive, Empty is not re.

Example:
$$EQ_{TM} = \{(M_1, M_2) \mid M_1 \text{ and } M_2 \text{ are TMs and } f(M_1) = f(M_2)\}$$

 $C(arrive EQ_{TM} = is Not recognizable (Not r.e.)$
 $Pf: We will show EMPty \leq EQ$
Let N be a TM for EQ_{TM} (Not necessarily a decider).
We will construct a TM N' for EMPTY as follows:

$$F: \langle M \rangle \longrightarrow \langle M, M^{\phi} \rangle$$

Example:
$$GQ_{TM} = \{(M_1, M_2) \mid M_1 \text{ and } M_2 \text{ are TMs and } \mathcal{K}(M_1) = \mathcal{K}(M_2)\}$$

What about GQ_{TM} ?
PE we will show $A_{TM} \leq_M GQ_{TM}$

INCORRECT MAPPING REDUCTION;

incorrect since
$$\mathcal{R}(M_{z})$$
 is either z^{*} or ϕ
But we don't know anything about $\mathcal{L}(M)$. So could
have \mathcal{M} accepting \mathcal{W} (so $\mathcal{K}_{M}\mathcal{W}$) $\in A_{TM}$) but $\mathcal{L}(M) \neq z^{*}$
In this case f maps $(\mathcal{M},\mathcal{W}) \in A_{TM}$ to a pair $\mathcal{K}_{M}\mathcal{M}_{z} \rangle \cong GQ_{TM}$

Example:
$$EQ_{TM} = \{(M_1, M_2) \mid M_1 \text{ and } M_2 \text{ are TMs and } \mathcal{X}(M_1) = \mathcal{X}(M_2)\}$$

What about EQ_{TM} ?
PE we will show $A_{TM} \leq m \in Q_{TM}$
Let M^{ALL} be a TM that accepts every input
 $f: On input s =
If s not of the correct form reject
 $E(se say s =
 $Construct M_2: [on input x]
 $Construct M_2: [on input x]$
 $Let f(s) =
 $f:
 $f:$$$

- () D is not r.e.
- (2) D is r.e. but Not recursive
- 3 ATM is r.e. but not recursive
- 4) Hult is re but not recursive, Half is not re.
- (5) Nonempty is r.e. but not recursive, Empty is not r.e.
- 6 EQIM is Not r.e., EQIM Not r.e.

Tips for characterizing a given Language as (1) recursive; (2) recursive but not re; (3) Not r.e.