Lecture 18

2

Since N always halts, N' always halts. Also N' accepts D. Contradiction since D is Not decidable :. Ann-is Not decidable TM Reductions

The previous proof showing that
$$A_{TM}$$
 is Not
decidable is a reduction; we showed:
a decider for $A_{TM} \implies \alpha$ decider for $\tilde{D} = A_{TM}$ also not
 $\tilde{D} = A_{TM}$

Defn Language A is TM-reducible to Language B, written $A \leq B$ if a decider for $B \implies$ a decider for A

*Important * If $A \in_T B$ and B is decidable then A is decidable If $A \in_T B$ and A is not decidable, then B is not decidable (contrapositive) More on Reducibilities

• I mays strings in A to strings in B, and strings Not in A to strings Not in B

B

More on Reducibilities

A language A is mapping-reducible to language B (A < B) If there exists a computable function $f: \Xi^* \rightarrow \Xi^*$ such that Vxe E* (xe A => f(x) eB) A В

• f mays strings in A to strings in B, and strings not in A to strings not in B

Lemma If $A \leq_{M} B$ then $A \leq_{T} B$ (mapping reductions are special case of Turing Reductions) More on Reducibilities

A language A is mapping-reducible to language B $(A \leq_m B)$ if there exists a computable function $f: \Xi^* \rightarrow \Xi^*$ such that $\forall x \in \Xi^* (x \in A \Leftrightarrow) f(x) \in B$) $\stackrel{z^*}{\longrightarrow} f$

Lemma Let A = B. Then:

B decidable ⇒ A decidable (or equivalently, A undecidable ⇒ B undecidable)
 B rewgnizable/re ⇒ A rewgnizable /r.e.

Lemma If we have $A \leq_n B$, then we also have $\overline{A} \leq_n \overline{B}$

To show A is not decidable

$$B \leq n A$$
:
 $B \leq n A$:

æ

Example : HALT = { < M, x > / M halts on input x }
Lemma 1 HALT is ne. (exercise)
Lemma 2 Halt is Not recursive/decidable
PROOF of Lemma 2 We will show
$$A_{TM} \leq_T HALT$$

Then since A_{TM} Not decidable, this implies HALT Not decidable.
Let N be an calleged) decider for HALT. We will use N to create
a decider, N for A_{TM}
N : [on imput

$$\frac{\text{Example : HATT}}{\text{Example : HATT}} = \frac{2}{3} \langle M, x \rangle / M \text{ halts on input } x \frac{3}{3}$$

$$\frac{\text{Lemma 1}}{\text{Lemma 2}} \quad HALT \text{ is not recursive/decidable.}$$

$$\frac{\text{Note : }}{\text{The since A_{TM} Not decidable, this implies HALT Not decidable.}}$$

$$\frac{\text{Note : }}{\text{The since A_{TM} Not decidable, this implies HALT Not decidable.}}$$

$$\frac{\text{Note : }}{\text{Note : }} \quad \text{Note : } \text{The since A_{TM} Not decidable, this implies HALT Not decidable.}}$$

$$\frac{\text{Note : }}{\text{Note : }} \quad \text{Note : } \text{The since A_{TM} Not decidable, the implies HALT Not decidable.}}$$

$$\frac{\text{Note : }}{\text{Note : }} \quad \text{Note : } \text{The since A_{TM} Not decidable, the implies HALT Not decidable.}}$$

$$\frac{\text{Note : }}{\text{Note : }} \quad \text{Note : } \text{The since A_{TM} Not decidable.}}$$

$$\frac{\text{Note : }}{\text{Note : }} \quad \text{Note : } \text{N$$

Proof of correctness: First, if N is a decider for HALT then N' will halt on all inputs. Now for correctness: First 'If M halts on x, then N' just simulates M on x and does the same thing, so N' will also halt raccept <M, x) Otherwise 'IF M does not halt on x, then N will Not accept so N' will also halt and reject.

N': on input
$$\langle N, X \rangle$$
:
Let M' be a TM that on input W, M'
ignores its input and simulates M on X.
IE M halts mx then M' halts and accepts
Run N on $\langle M' \rangle$
If N accepts $\langle M' \rangle \longrightarrow$ halt and accept
Otherwise \longrightarrow halt and reject

Nole: This is a mapping reduction showing ATM = Nonempty: f: <M,x> -> <M'_M,x>