Lecture 17

WW 3 out (Due Nov wo)

Recap from Last Week: Proving there are Languages not re.

Idea: show there are more Languages than fie. languages.
To compare sizes of infinite sets we use the Notion of countable/uncountable.

Def A set S is countable if there is a 1 tor 1 mapping from $S \rightarrow \mathbb{N}$

Example $\mathbb{Z}=\{\ldots-3,-2,-1,0,1,2, \ldots\}$
So $f(0)=0$
$f(1)=1$
$f(2)=-1$
$f(3)=2$
$f(4)=-2$
$f(5)=3$
$f(6)=-3$
Define $f(i)=\left\{\begin{aligned}-\frac{i}{2} & \text { if } i \text { is even } \\ \frac{i+1}{2} & \text { if } i \text { is odd }\end{aligned}\right.$
$\vdots \quad$ maps $\mathbb{N} \underset{\text { onto integers }}{\rightarrow}$
\square

A mapping $f: D \rightarrow \overbrace{R}^{\text {range }}$ is $1-1$ if for every element $y \in \mathbb{R}$, there is at most one $x \in D$ that maps to y ($\forall y \in R$ at most one $x \in D$ st. $f(x)=y$)

A mapping $g: D \rightarrow R$ is onto if for every $y \in R$ there is at least one $x \in D$ that maps to y $(\forall y \in R \exists$ at least one $x \in D$ s.t. $f(x)=y)$

this map g is onto
domain range
A mapping $f: D \rightarrow \widetilde{R}$ is $1-1$ if for every element $y \in R$, there is at most one $x \in \mathbb{D}$ that maps to y $(\forall y \in \mathcal{Z}$ at most one $x \in D$ s.t. $f(x)=y)$

A mapping $g: D \rightarrow R$ is onto if for every $y \in R$ there is at least one $x \in D$ that maps to y

$$
(\forall y \in R \exists \text { at least one } x \in \mathbb{D} \text { s.t. } f(x)=y)
$$

HW3 Question: Prove for any infinite set S
\exists a function $f: S \rightarrow \mathbb{N}$ that $151-1$ if and only if
\Rightarrow a function $g: \mathbb{N} \rightarrow S$ that is onto

Idea: Show there are way more languages than ne. languages. To compare sizes of infinite sets we use the Notion of countable us uncountable.

Def A set S is countable if there is a H mapping from $S \rightarrow \mathbb{N}$
more Examples of countable Sets
(1) Any finite set S is countable
(2) The set of all pairs $(i, j) \in \mathbb{N} \times N$
(3) $Q=\left\{\left.\frac{m}{n} \right\rvert\, m, n \in \mathbb{N}\right\}$

Lemma (HW3 problem) S countable $\Rightarrow \exists$ an onto mapping $g: \mathbb{N} \rightarrow S$

Deft N A set S is countable if there is a $1-1$ mapping from $S \rightarrow \mathbb{N}$
How to show that some (infinite) set is not countable?

Proof Diagonalization argument
(Similar to Cantor's argument showing that the set of all real numbers is uncountable by showing there is no $(-1 \mathrm{map}$ from $\underbrace{\mathbb{R}}_{\text {reals }} \Rightarrow \mathbb{N})$

Exumplei the set of all real numbers in $[0,1]$ is not countable.
Suppose (for contradiction) \exists a H moping g from $R \rightarrow \mathbb{N}$
By HW3 problem this implies \exists an onto mapping $f: \mathbb{N} \rightarrow R$

$i=0$.0	1	7	4	3	9	8	\cdots		$\leftarrow f(0)$
$i=1$.00	0	5	6	9	0	2	2	\cdots	$\leftarrow f(1)$
$i=2$	1	1	8	4	0	0	\cdots			\vdots
$i=3$.1	1	2	3	\cdots					

Construct real number $x=. x_{0} x_{1} x_{2} \ldots$ such that $x_{i} \neq f(i)_{i}$

$$
\text { e.g. Let } x_{i}=\left\{\begin{array}{lll}
0 & \text { if } & f(i)_{i} \neq 0 \\
1 & \text { if } & f(i)_{i}=0
\end{array}\right.
$$

Since x Not any row of table (by construction), f is not onto mapping. \#

Example 2 The set of all Languages over $\{0,1\}^{*}$ is not countable.

Suppose (for contradiction) \exists an onto mapping $f: \mathbb{N} \rightarrow\left\{L \mid L \leq\left\{0_{1} 1\right\}^{x}\right\}$

	ε	0	1	00	01	10	11	000	001	010	\cdots		\leftarrow	enumeration of all $w \in\{0,1\}^{*}$
$i=0$	$\rho^{-1} 1$	1	0	0	1	1	1	1	1	\cdots	$\leftarrow f(0)$			

Row i of table is the its Language caccording to the ordering giver by f)
Let $L=\left\{w\left(w\right.\right.$ is the $i^{\text {th }}$ string over $\{0,1\}^{k}$ and $\left.f(i)_{i}=0\right\}$ L is a language not in range of f. \#

Example 2 The set of all Languages over $\{0,1\}^{*}$ is not countable.
Suppose (for contradiction) \exists an onto mapping $f: \mathbb{N} \rightarrow\left\{L \mid L \leq\{0,1\}^{x}\right\}$

Row i of table is the its Language caccording to the ordering giver by f)
Let $L=\left\{w \mid w\right.$ is the $i^{\text {th }}$ string over $\{0,1\}^{k}$ and $\left.f(i)_{i}=0\right\}$ L is a language not in range of f. \#

$$
L=b_{0} b_{1} b_{2} \ldots b_{0}=\left\{1 \text { iff } \underline{f_{i}(i)_{i}=0}\right\}
$$

what goes mong if I try to show the set of integers $\{-3,-2,-1,0,1, \ldots\}$ is uncountable? assume floc $\exists f: N \underset{\text { onto }}{\mathbb{T}_{\&} \text { integers }}$

Theorem There exists languages over $\{0,1]^{x}$ that are not re.

Proof 1 Let $\Sigma=\{0,1\}$

- the set of all Turing-recognizaible Languages is countable
- But on the other hand my Example 2 , the set of all languages over $\{0,1\}^{*}$ is uncountable
- Since \{r.e. Languages\} $\leq A L L L \leq \Sigma^{*}$ \exists a language $L \leqslant \Sigma^{*}$ that is not re.

Theorem There exists a Language $L \subseteq\{0,1\}^{*}$ that is not re. (recognizable)

Pf z (more explicit)
Fix an enumeration of all TMs over $\{0,1\}$ vising our encoding of $T M s$ $M_{1}, M_{2}, M_{3}, \ldots$
order lexicographically by their encoding (so $\left\langle\mu_{1}\right\rangle<\left\langle M_{2}\right\rangle<\ldots$)

Entry $\quad\left(M_{i},\left\langle M_{j}\right\rangle\right)= \begin{cases}1 & \text { if } M_{i} \text { accepts }\left\langle M_{j}\right\rangle \\ 0 & \text { otherwise }\end{cases}$

Define $D=\{\langle M\rangle \mid\langle M\rangle$ encodes $T M M$, and M does not accept $\langle M\rangle\}$
 the "diagonal Language"
since it does the opposite of what was on the diagonal

$$
\begin{aligned}
& D\left(\left\langle M_{i}\right\rangle\right)=\left\{\begin{array}{lll}
0 & \text { if } M_{i}\left(\left\langle M_{i}\right\rangle\right) & \text { accepts } \\
1 & \text { otherwise }
\end{array}\right. \\
& \widetilde{D}(\langle M\rangle)= \begin{cases}1 & \text { if } M(\langle M\rangle) \text { accepts } \\
0 & 0 \text { then use }\end{cases}
\end{aligned}
$$

Theorem There exists a Language $L \leq\{0,1\}^{x}$ that is not re. (recognizable)
Pf (diagonalization)
Fix an enumeration of all TMs over $\{0,1\}$ using our encoding of $T M_{s}$

$$
M_{1}, M_{2}, M_{3}, \ldots
$$

order lexicographically by their encoding (so $\left\langle\mu_{1}\right\rangle<\left\langle M_{2}\right\rangle<\ldots$)
Define $D=\{\langle M\rangle \mid\langle M\rangle$ encodes $T M M$, and M on input $\langle M\rangle$ does not halt and accept $\}$

Claim D is not re. (recognizable)
Pf By construction, for all $T M_{s} M_{i}$ over Σ, $\mathscr{L}\left(M_{i}\right) \neq D$ since $\left\langle M_{i}\right\rangle \in D$ if and only if $\left\langle M_{i}\right\rangle \notin \mathcal{L}\left(M_{i}\right)$

Recall $\widetilde{D}=\{\langle M\rangle \mid M(\langle M\rangle)$ accepts $\}$
Note: \tilde{D} is similar to $A_{T M}$

$$
A_{T M}=\{\langle M, w\rangle \mid M \text { accepts } w\}
$$

Claim \widetilde{D} is recognizable /re.
Pf : $T M$ for \widetilde{D} on input $\langle M\rangle$

- Check to see if input is legal encoding of a TM if not, reject
- otherwise run M on $\langle M\rangle$:

If simulation halts and accepts \rightarrow halt accept

A note on D, and \widetilde{D} vs $\bar{D} \quad$ all string
$D=\{\langle\mu\rangle \mid M(\langle\mu\rangle)$ does not accept $\}$ $\checkmark \omega \in\{0,1]^{*}$
\bar{D} = complement of D
ILlegal $=\{w \mid w$ does not encode a legal TM $\}$

$$
\widetilde{D}=\left\{\langle M\rangle^{\prime} v(\langle M\rangle) \text { accepts }\right\}
$$

Note: \widetilde{D} recursive eff \bar{D} recursive since $\bar{D}=\widetilde{D} \cup I \| l e g a l$ and $I l l e g a l$ is recursive.
Thus we will sometimes write \widetilde{D} as complement of D (since distinction not that important)

Thus we have shown: $\underset{\sim}{D}$ is not re.
\widetilde{D} is re.

Question Is \widetilde{D} recursive (decidable)?
Remember by closure propatt we hare:
$\forall L[L$ is decidable iff T is decidable

Thus we have shown: \widetilde{D} is re., wot recursive
D is not re. \longleftarrow by diagonalad on
Question Is \widetilde{D} recursive (decidable)?

No! Since decidable languages are closed under complement, \bar{D} is not decidable.

In more detail:
$D=\{\langle M\rangle$ (M codes $T M M$ and $M(\langle M\rangle)$ does wot accept
$\bar{D}=\underbrace{\{w \mid w \text { does not code a } T M\}}_{\text {decidable }} \cup \underbrace{\{\langle M\rangle \mid\langle M\rangle \text { codes } M \text { and } M(\langle M\rangle) \text { accept }\}\}}_{\widetilde{D}}$
$\therefore \bar{D}$ Not decidable since if it were, D would be decidable.
$\therefore \tilde{D}$ not decidable since if it were \bar{D} would be decidable

Other Languages that are not Decidable

- Recall $A_{T M}=\{\langle M, x\rangle$ | $w=\langle M\rangle$ encodes some $T M M$, and M accepts $x\}$
- We saw that $A_{T M}$ is re./ recognizable.

Pf that $A_{\text {TM }}$ is not decidable:
Assume for sake of contradiction there is a decider N for $A_{T M}$. We will use M to construct a decider N^{\prime} for \widetilde{D} :
N^{\prime} : On input $\langle M\rangle$:
check if input is a legal encoding of a TM. If not reject otherwise Run N on $\langle M,\langle M\rangle\rangle$

If N accepts \rightarrow reject
If N rejects \rightarrow accept
Since N always halts, N^{\prime} always halts.
Also N^{\prime} accepts \widetilde{D}. contradiction since \widetilde{D} is not decidable
$\therefore A_{T M}$ is not decidable

