Lecture 17

HW3 out (Due Nov zo)

Idea: show there are more languages than rie. Languages. To compare sizes of infinite sets we use the Notion of countable/uncountable.

Example
$$Z = \{\dots, -3, -2, -1, 0, 1, 2, \dots\}$$

So $f(0) = 0$
 $f(1) = 1$
 $f(2) = -1$
 $f(3) = 2$
 $f(4) = -2$
 $f(4) = -2$
 $f(4) = -2$
 $f(6) = -3$
 $f(7) = -2$
 $f(7) = -2$

A mapping
$$f: D \rightarrow R$$
 is 1-1 if $D \rightarrow R^{2}$
for every element yeR, there is
at most one xED that maps to y
(VyeR Z at most one xED s.t. $f(x)=y$)

thus map g us onto

A mapping
$$f: D \rightarrow R$$
 is 1-1 if D for every element yeR, there is
dot most one xED that maps to y
(VyER Z at most one xED s.t. $f(x)=y$)

A mapping
$$g: D \rightarrow R$$
 is onto if
for every yeR there is at least one
 $x \in D$ that maps to y
($\forall y \in R \exists at least one x \in D s.t. f(x)=y$)

HW3 Question: Prove for any infinite set S I a function f: S > IN that is 1-1 if and only if I a function g: IN > S that is onto

DetN A set S is countable if there is a 1-1 mapping from
$$S \rightarrow N$$

How to show that some (infinite) set is not countable ?

(similar to Cantor's argument showing that
the set of all real numbers is uncountable
by showing there is NO (-) map from
$$R \rightarrow N$$

reals

Example: The set of all real numbers in (0,1] is not countable.
Suppose (for contradiction)
$$\exists a \dashv mapping g$$
 from $R \Rightarrow iN$
By HW3 problem this implies $\exists an onto mapping f: iN \Rightarrow R$
 $i = 0$. (D) $7 \dashv 3 q g$ $f(0)$
 $i = 1$. 0(D) $2 \le 6 q 0 2 2 - \cdots + f(1)$
 $i = 2$... $i \mid g \nmid 0 0 \cdots$
 $i = 3$... $i \mid 2 : 3 \cdots$
Construct real number $x = x_0 x_1 x_2 \cdots$ such that $x_i \neq f(i)_i$
 $e.g.$ Let $x_i = \{0 \text{ if } f(i)_i \neq 0$
 $1 \text{ if } f(i)_i = 0$

Since x Not any row of table (by construction), f is Not onto mapping. #

Example 2 The set of all languages over {0,1}* is not countable. Suppose (for contradiction) \exists an onto mapping $f: \mathbb{N} \rightarrow \{L \mid L \leq \text{so}_1\}^{k}$ WESON i=0 07110011111... $\leftarrow f(o)$ i=1 1 2 1 1 1 0 0 1 0 0 ... ←f(ı) Row & of tuble is the it language (according to the ordering given by f)

Vet L = { w | w is the it string over {o,1} and f(i);=0} L is a language not in range of f. #

 $L = b_0 b_1 b_2 \cdots \cdots \cdots b_n = \begin{cases} i \text{ iff } f(i)_i = 0 \end{cases}$

what goes mony if
$$S$$
 try to show
the set q integers $S_{1}=3,-2,-1,0,1,\ldots$ S is monthable?
assume froc $3f: IN = T_{q}$ integers
 0 $1 = 2$ -11 T_{q} -111 S_{1} S_{1} S_{2} S_{2} S_{2} S_{3} S_{4} S_{1} S_{1} S_{1} S_{1} S_{1} S_{1} S_{1} S_{1} S_{2} S_{1} S_{2} S_{1} S_{2} S_{1} S_{2} S_{1} S_{2} $S_{$

Theorem there exists languages over {0,1]* that are not r.e. Let 2 = 2017 Proof1 the set of all Turing-recognizcible languages is countable · But on the other hand by Example Z, the set of all languages over 20,13th is uncountable • Since {r.e. Languages} ≤ ALL L= 2* Za Language LEE* that is Not r.e.

Theorem There exists a Language $L = \{0,1\}^{*}$ that 'is not re. (recognituble) PF Z (more explicit) Fix an enumeration of all TMs over $\{0,1\}$ using our encoding of TMs $M_{1}, M_{2}, M_{3}, \ldots$ order lexicographically by their encodings (so $\{M_{1}\} < \{M_{2}\} < \ldots$)

Entry
$$(M_i, \langle M_j \rangle) = \begin{cases} 1 & \text{if } M_i \text{ accepts } \langle M_j \rangle \\ 0 & \text{otherwise} \end{cases}$$

Define
$$D = \{\langle M \rangle \mid \langle M \rangle \text{ enwdes TM } M, \text{ and } M \text{ does not accept } \langle M \rangle \}$$

$$Define D = \{\langle M \rangle \mid \langle M \rangle \text{ enwdes TM } M, \text{ and } M \text{ does not accept } \langle M \rangle \}$$

$$D \text{ is called the "diagonal language"}$$

$$M_{1} \mid O O \circ \circ \circ$$

$$M_{2} \mid I \mid O \circ \circ \circ \circ$$

$$M_{3} \mid O \mid O \mid O \circ \circ \circ$$

$$M_{3} \mid O \mid O \mid O \circ \circ \circ$$

$$M_{4} \mid O \mid O \circ \circ \circ$$

$$D(\langle M \rangle) = \{O \text{ if } M(M_{1})\} \text{ acepts}$$

$$D(\langle M \rangle) = \{O \text{ if } M(\langle M \rangle)\} \text{ acepts}$$

Recall D = {<M> | M(<M>) accepts }

Thus we have shown: D is not r.e. D is r.e.

Question IS D recursive (decidable)?

Remember by closure property ne have; UL [L'u decidable iff [îs decidable] NOT

Other Languages that are Not Decidable • Recall ATM = {<M, x} | w = <M} encodes some TM M, and M accepts x} • We saw That Am is r.e. / recognitable. PF that ATM is not decidable: Assume for sake of contradiction there is a decider N for ATM We will use M to construct a <u>decider</u> N' for \widetilde{P} : N': | On input <M>: check if input is a legal encoding of a TM. Jf not reject otherine Run N on (M, <m>) If N accepts -> reject

If N accepts -> reject If N rejects -> accept