Encoding TMs and TM computations
as binary numbers

We want to consider problems that take a description of a TM as input, together with an input to M

To do this we have to decide on an encoding of TM and TM computations. Next we descnbe a particular encoding (but there are many possible encodings)

Lecture 16

- WW 3 out on Monday Nor 6 (Due Nov 20)
- Today:
(1) Universal $T M_{s}$
(2) Closure Properties of Recognizable/Decidable Languages
(3) Proving some Languages are not recugnizable/decidable - Diagoralization
- Turing Machine Reductions

Encoding Turing Machines
Let $M=\left(\Sigma_{1} Q, \Gamma, \delta, q_{1}, B, q_{2}, q_{3}\right)$
Where

$$
\begin{aligned}
\Sigma & =\{0,1,2\} \\
Q & =\left\{q_{1}, q_{2}, \ldots q_{n}\right\} \\
\Gamma & =\left\{x_{1}, x_{2}, \ldots x_{k}\right\} \text { where } x_{1}=0 \quad x_{2}=1 \quad x_{3}=2 \quad x_{4}=B \\
D_{1} & =\text { left } D_{2}=\text { right }
\end{aligned}
$$

* Note: we always assume without loss of generality that $q_{1}$ = start state, $q_{2}=$ halt and accept, $q_{3}$ = halt and reject state and $\Sigma=\{0,1,2\}$.
We represent transition $\delta\left(q_{i}, x_{j}\right) \rightarrow\left(q_{k}, x_{l}, D_{m}\right)$ by $0^{i} 10^{j} 10^{k} 10^{l} 10^{m}$
Code for $M: 111 \operatorname{code}_{1} 11 \operatorname{code}_{2} 11 \ldots 11$ coder 111
where code $1, \ldots$, coder are the codes for transition function

Encoding Turing Machines
Example. $Q=\left\{q_{1} q_{2} q_{3}\right\}, \Sigma=\{0,1\}, \Gamma=\{0,1, B\}$

$$
\begin{aligned}
& \delta\left(q_{1}, 1\right)=\left(q_{3}, 0, R\right) \quad 0^{\prime} 10^{2} 10^{3} 10^{\prime} 10^{2} \leftarrow c_{1} \\
& \delta\left(q_{3}, 0\right)=\left(q_{1}, 1, R\right) \quad 0^{3}|0| 0^{1} 10^{2} \mid 0^{\alpha} \leftarrow c_{2} \\
& \delta\left(q_{3}, 1\right)=\left(q_{2}, 0, R\right) \quad 0^{3} 10^{2} 10^{2} 10^{1} 10^{2} \leftarrow c_{3} \\
& \delta\left(q_{3}, B\right)=\left(q_{3}, 1, L\right) \quad 0^{3} 10^{3}\left|0^{3} 10^{2}\right| 0^{1} \leftarrow c_{4} \\
& M=\left\|c_{1}\right\| c_{2}\left\|c_{3}\right\| c_{4}\| \| \\
& (M,\|0\| 0) \text { encoded as }\left\|c_{1}\right\| c_{2}\left\|c_{3}\right\| c_{4}\| \| \frac{x}{110 \| 0} \\
& \text { * uniquely decidable }
\end{aligned}
$$

Universal Turing Machines
Def n. $A_{T M}=\{\langle M, w\rangle \mid M$ is a $T M$ and $M$ accepts $w\}$
Theorem $A_{T M}$ is recognizable/r.e.
Pf We describe a universal TM U
U: Takes as ir put $\langle M, x\rangle$

- $u$ halts and accepts $\left\langle\mu_{1} x\right\rangle$ if $M$ halts and accepts $x$
- U halts and rejects $\langle M, x\rangle$ if $M$ halts and rejects $x$
- U gets into infinite loop on $\langle M, x\rangle$ if $M$ gets into infinite loop on input $x$

Universal Turing Machines

We describe a 3-tape TM (at a high level) for $U$. (3-tapers can be simulated by one tape)
tape $1 \quad\left\langle M_{1} x\right\rangle$
tape 2 $\square$
tape 3 $\square$

Universal Turing Machine $U$ on $\langle M, x\rangle$
(1) initial state

tape $2 \frac{7}{\text { Q.... }}$
tape 3 B

- check that contents of tape 1 is a legal encoding $\langle M, x\rangle$

Universal Turing Machines
(2)
tape 1 l|\$ code $11 \operatorname{code}_{2} 11 \ldots 11 \operatorname{code}_{r} 11 \mid \$$...
tape $2 \underbrace{80 . .}_{\underbrace{0}_{x} 110 R B \ldots}$ contents of M's tape
tape $3 \$ 0$ \&

- Initialize tape 1 to contain $\langle M\rangle$, tape 2 to contain $\$ x$
tape 3 to contain $\& q_{1} \quad$ (start state of $\mu$ )

Universal Turing Machines
(3)
tape 1 11\$ wade, 11 code, 11... 11 coder 111
tape $2 \$ x_{1} x_{2} \ldots x_{n}$
tape 3 \&
Loop
If tape 3 contains $\# q_{2}$ (accept stare) halt and accept If tape 3 contains $\$ q_{3}$ (halt + reject state) halt and reject
OW simulate Next state:
store contents of tape 2 head and current state of $M$ in $U$ 's state. Scan tape 1 to find corresponding code, Modify tapes 2,3 accordingly

Universal Turing Machines
(3) Example (of Loop): Say $\delta\left(q_{y}, 1\right) \rightarrow \delta\left(q_{5}, 0, R\right)$
tape $1 \quad 11 \$$ code $_{1} 11$ code $11 \ldots 11 \operatorname{coder}_{r} 11 \mid R \ldots$
tape $2 \$ 0012$ i 01 B
tape 3 \$0000\&\&…

tape 1 11\$ wade 11 code, 11... 11 coder 111
tape $2 \$ 0012001 B B \cdots$
tape $3 \$ 00000$ B

CLOSURE PROPERTIES
(1) L recursive $\Rightarrow L$ r.e.
(2) Closure of recursive languages under $\cap_{1}, U_{1}, 7$ : $L_{1}, L_{2}$ recursive $\Rightarrow L_{1} \cup L_{2}, L_{1} n L_{2}, L_{1}, L_{2}$ are recursive
(3) closure of re. Languages under $n, u$ $L_{1}, L_{2}$ re. $\Rightarrow L_{1} \cup L_{2}, L_{1} n L_{2}$ recursive

(4) $L$ is re. and $L$ is re. $\Rightarrow L$ is recursive Well sketch proof of (4); rest are left as exercises

CLOSURE PROPERTIES
(4) $L$ re., and $\bar{L}$ re. $\Rightarrow L$ is recursive

Proof sketch: (Dovetailing)
Let $M$, be a TM st $\mathcal{L}(M)=L$ and let $M_{2}$ be a $T M$ st $\mathcal{Z}(M)=\bar{L}$
New TM M on $x$ :
(1) For $i=1,2,3$,
(2) Run $M_{1}$ on $x$ for $i$ steps
(3) if $M_{1}$ accepts $x$, halt + accept
(4) Run $M_{2} m \times$ for $i$ steps
(5) if $M_{2}$ accepts $x$, halt and reject


CLOSURE PROPERTIES
(4) $L$ re., and $\bar{L}$ re. $\Rightarrow L$ is recursive

Proof sketch: (Dovetailing)
Let $M$, be a TM st $\mathcal{L}(M)=L$ and let $M_{2}$ be a $T M$ st $\mathcal{Z}(M)=\bar{L}$
New TM M on $x$ :
(1) For $i=1,2,3$,
(2) Run $M_{1}$ on $x$ for $i$ steps
(3) if $M_{1}$ accepts $x$, halt + accept
(4) $\operatorname{Run} M_{2} m \times$ for $i$ steps
(5) if $M_{2}$ accepts $x$, halt and reject


Claim: $M$ always halts and $f(M)=L$ :
$\forall x$ exactly one of $M_{1}(x)$ and $M_{2}(x)$ halts and accepts.
$\therefore \forall x$ there is some time step $i$ s.t. either (i) $M_{1}(x)$ halts and accepts or (ii) $M_{2}(x)$ halts and accepts
If (i) then $x \in L$ and $M(x)$ halts + accepts (line ${ }^{3}$ )
If (ii) then $x \not a L$ and $M(x)$ halts + rejects (line 5)

Computability
Q: what problems are Turing decidable?
Q: Can we decide if a given program halts on all inputs?

Motivating
Example: Does this Process Terminate?
Hailstone $(n)$ in jut $n>0$
Repeat:
If $n=1$ hast
Else if $n$ is even set $n=\frac{n}{2}$
Else set $n=3 n+1$

Motivating: Does this Process Terminate?
Example:
Hailstone $(n)$ miput $n>0$
Repeat:


If $n=1$ halt
Else if $n$ is even set $n=\frac{n}{2}$ Else set $n=3 n+1$


Many Languages are not res. (recognizable)!
Idea: Show there are way more Languages than ne. languages.
To compare sizes of infinite sets we use the Notion of countable vs uncountable.

Def A set $S$ is countable if there is a $1-1$ mopping from $S \rightarrow \mathbb{N}$

Many Languages are not res. (recognizable)!
Idea: show there are way move Languages than ne. languages.
To compare sizes of infinite sets we use the Notion of countable vs uncountable.

Def A set $S$ is countable 'if there is a $1-1$ mopping from $S \rightarrow \mathbb{N}$

Examples
(1) Any finite set $S$ is countable
(2) The set of all pairs $(i, j) \in \mathbb{N} \times \mathbb{N}$ is countable

Many Languages are not re. (recognizable)!

Def A set $S$ is countable if there is a $1-1$ mopping from $S \rightarrow \mathbb{N}$
How to show that some (infinite) set is not countable?
Proof Diagonalization argument
(Similar to Cantor's argument showing that the set of all real numbers is uncountable by showing there is no $(-1 \mathrm{map}$ from $\underbrace{\mathbb{R}}_{\text {reals }} \Rightarrow \mathbb{N})$

Example the set of all real numbers in $[0,1]$ is not countable.

Suppose (for contradiction) $\exists$ a $H$ moping f from $\mathbb{R} \rightarrow \mathbb{N}$ :

| $i$ | $f(i)$ |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | .0 | 1 | 7 | 4 | 3 | 9 | 8 | $\cdots$ |$]$

Construct real number $x=. x_{1} x_{2} x_{3} \ldots$ such that $x_{i} \neq f(i)_{i}$

$$
\text { e.g. Let } x_{i}=\left\{\begin{array}{lll}
0 & \text { if } & f(i)_{i} \neq 0 \\
1 & \text { if } & f(i)_{i}=0
\end{array}\right.
$$

$$
x=.1100 \ldots
$$

Since $x$ not any row of table (by construction), $f$ is Not a $l-1$ mapping. \#

Many Languages are not re. (recognizable)!
Proof Idea Let $\Sigma=\{0,1\}$

- Every $T M$ over $\Sigma=\{0,1\}$ is encoded by a unique string $\langle M\rangle \in \Sigma^{*}$
- Thus every Turing recognizable language over $\{0,1\}$ can be described/encoded by a string $\langle\mu\rangle \in \Sigma^{*}$ (the $M$ that accepts $L$ )
- Thus the set of all Turing-recognizcible Languages is countable
- But on the other hand the set of all languages over $\{0,1\}$ is uncountable
- Thus most Languages $L \leq \Sigma^{*}$ are not recognizable

Theorem There exists a Language $L \leq\{0,1\}^{x}$ that is not re. (recognizable)

Pf (diagonalization)
Fix an enumeration of all TMs over $\{0,1\}$ using our encoding of $T M s$ $M_{1}, M_{2}, M_{3}, \ldots$
order lexicographically by their encoding (so $\left\langle\mu_{1}\right\rangle<\left\langle M_{2}\right\rangle<\ldots$ )
Define $D=\{\langle M\rangle \mid\langle M\rangle$ encodes $T M M$, and $M$ on input $\langle M\rangle$ does not halt and accept $\}$ the Diagonal Language

Define $D=\{\langle M\rangle \mid\langle M\rangle$ encodes $T M M$, and $M$ on input $\langle M\rangle$ does not halt and accept $\}$
$\left.\begin{array}{l|cccccc} & \left\langle M_{1}\right\rangle & \left\langle M_{2}\right\rangle & \left\langle M_{3}\right\rangle & \left\langle M_{4}\right\rangle & \cdots & \cdots \\ \hline M_{1} & 0 & 1 & 0 & 0 & \cdots\end{array}\right]$

Define $D=\{\langle M\rangle \mid\langle M\rangle$ encodes $T M M$, and $M$ on input $\langle M\rangle$ does not halt and accept $\}$
$\left.\begin{array}{l|cccccc} & \left\langle M_{1}\right\rangle & \left\langle M_{2}\right\rangle & \left\langle M_{3}\right\rangle & \left\langle M_{4}\right\rangle & \cdots & \cdots \\ \hline M_{1} & 0 & 1 & 0 & 0 & \cdots\end{array}\right]$

Define $D=\{\langle M\rangle \mid\langle M\rangle$ encodes $T M M$, and $M$ on input $\langle M\rangle$ does not halt and accept $\}$
$\left.\begin{array}{l|cccccc} & \left\langle M_{1}\right\rangle & \left\langle M_{2}\right\rangle & \left\langle M_{3}\right\rangle & \left\langle M_{4}\right\rangle & \ldots & \ldots \\ \hline M_{1} & 1 & 1 & 0 & 0 & \cdots\end{array}\right]$

Theorem There exists a Language $L \leq\{0,1\}^{x}$ that is not re. (recognizable)
Pf (diagonalization)
Fix an enumeration of all TMs over $\{0,1\}$ using our encoding of $T M_{s}$

$$
M_{1}, M_{2}, M_{3}, \ldots
$$

order lexicographically by their encoding (so $\left\langle M_{1}\right\rangle<\left\langle M_{2}\right\rangle<\ldots$ )
Define $D=\{\langle M\rangle \mid\langle M\rangle$ encodes $T M M$, and $M$ on input $\langle M\rangle$ does not halt and accept $\}$ the Diagonal Language
Claim $D$ is not re. (recognizable)
Pf By construction, for all $T M_{s} M_{i}$ over $\Sigma$, $\mathscr{L}\left(M_{i}\right) \neq D$ since $\left\langle M_{i}\right\rangle \in D$ if and only if $\left\langle M_{i}\right\rangle \in \mathcal{K}\left(M_{i}\right)$

Define $\bar{D}=\{\langle M\rangle \mid\langle M\rangle$ encodes $T M M$, and $M$ on input $\langle M\rangle$ accepts $\}$
$\left.\left.\begin{array}{l|cccccc} & \left\langle M_{1}\right\rangle & \left\langle M_{2}\right\rangle & \left\langle M_{3}\right\rangle & \left\langle M_{4}\right\rangle & \cdots & \cdots \\ \hline M_{1} & 0 & 1 & 0 & 0 & \cdots\end{array}\right] \begin{array}{lllll} \\ \hline M_{2} & 1 & 0 & 1 & 1\end{array}\right]$

Claim $\bar{D}$ is recognizable /re.
Pf: TM for $\bar{D}$ on input $\langle M\rangle$

- Check to see if input is legal encoding of a TM if not, reject
- otherwise run $M$ on $\langle M\rangle$ :

If simulation halts and accepts $\rightarrow$ halt accept

Thus we have shown:
$\bar{D}$ is re.
$D$ is not re.

Question: Is $\bar{D}$ recursive/decidable?

