We want to consider problems that take a description of a TM as input, together with an input to M To do this we have to decide on an encoding of TMs and TM computations. Next ve describe a particulter encoding (but there are many possible encodings)

Lecture 16

· HW3 out on Monday Nov 6 (Due Nov zo)



able

noable/decidable

Encoding Turing Machines  
Let 
$$M = (Z_1Q_1 \Gamma_1 S_1Q_1, B_1Q_2, 2Z_3)$$
  
Where  $Z = \{Q_{1,1}Q_2, \dots, Q_n\}$   
 $Q = \{Q_{1,1}Q_2, \dots, Q_n\}$   
 $\Gamma = \{Y_{1,1}, Y_{2,1}, \dots, Y_k\}$  where  $Y_1 = 0$   $X_2 = 1$   $X_3 = 2$   $X_4 = B$   
 $D_1 = 1eft$   $D_2 = right$   
\* Note: we always assume without loss of generality that  $Q_1 = start$  state  
 $Q_2 = halt$  and accept,  $Q_3 = halt$  and reject state  
and  $Z = \{Q_{1,1}Z_3\}$ .  
We represent transition  $S(Q_{1,1}Y_1) \rightarrow (Q_{K_1}Y_{L_1}, D_m)$  by  $D^{\frac{1}{2}} 10^{\frac{1}{2}} 10^{\frac{1}{2}} 10^{\frac{1}{2}}$   
Code for  $M$ : 111 code 11 code 11 ... 11 code 111

where code,,, code, are the codes for transition function

Encoding Turing Machines  
Example. 
$$Q \sim i q_1 q_2 q_3 j_1 z = i (q_1, q_1, q_2) \int z = i (q_1, q_1, q_2) \int z = i (q_1, q_2, q_3) \int z = i (q_1, q_1, q_2) \int z = i (q_1, q_1, q_$$

Universal Turing Machines

Theorem A is recognizabe/r.e. Pt we describe a universal TM U U: Takes as input <M, x> • U halts and accepts < M, x> if M halts and accepts x • U halts and rejects < M, x> if M halts and rejects × · L gets into infinite loop on (M,x) if M gets into infinite loop on input x

Universal Turing Machines

We describe a 3-tape TM (at a high level) for ll. (3-tapes can be simulated by one tape)





· check that contents of tape 1 is a legal encoding (M, x)



Universal Turing Machines

tape 1 
$$11$ wde_{1} 11 code_{1} 11 \dots 11 code_{r} 11 | R \dots$$
  
tape 2  $\$ 0012101BB \dots$   
tape 3  $\$ 0000BB \dots$   
tape 1  $11$ wde_{1} 11 code_{1} 11 \dots 11 code_{r} 11|$   
tape 2  $\$ 0012001BB \dots$   
tape 3  $\$ 00000BB \dots$ 

CLOSURE PROPERTIES

CLOSURE PROPERTIES

(4) L r.e., and  $\overline{L}$  r.e.  $\Rightarrow$  L is recursive <u>Proof sketch</u>: (Dovetailing) Let M, be a TM st  $\mathcal{I}(M) = L$  and let  $M_2$  be a TM st  $\mathcal{I}(M) = \overline{L}$ 



CLOSURE PROPERTIES

(4) L r.e., and  $\overline{L}$  r.e.  $\Rightarrow$  L is recursive <u>Proof sketch</u>: (Dovetailing) Let M, be a TM st  $\mathcal{I}(M) = L$  and let  $M_2$  be a TM st  $\mathcal{I}(M) = \overline{L}$ 



Claim: M always hults and I(M)=L: Vx exactly one of M(x) and Mz(x) halts and accepts. . Vx there is some time step i s.t. either (i) M(x) halts and accepts or (ii) Mz(x) halts and accepts If (i) then xEL and M(x) halts + accepts (line 3) If (ii) then XEL and M(x) halts + rejects (line 5)

Computability

Q: What problems are Turing decidable? Q: can we decide if a given program halts on all inputs?









Many Languages are Not r.e. (recognitable)!

Idea: show there are way more languages than ne. languages. To compare sizes of infinite sets we use the Notion of countable.

DetN A set S is countable if there is a 1-1 mapping from S -> N

Idea: show there are way more languages than ne. languages. To compare sizes of infinite sets we use the Notion of countable.

DefN A set S is countable if there is a 1-1 mapping from 
$$S \rightarrow N$$

Many Languages are Not r.e. (recognizable) !

Det N A set S is countable if there is a 1-1 mapping from 
$$S \rightarrow N$$

How to show that some (infinite) set is <u>Not</u> countable ? <u>Proof</u> Diagonalitation argument

(similar to Cantor's argument showing that  
the set of all real numbers is uncountable  
by showing there is NO (-1 map from 
$$R \rightarrow N$$
)  
reals

Example The set of all real numbers in (0,1] is not countable. Suppose (for contradiction) ] a H mapping f from R > IN: ι\_\_\_\_\_f(i) Construct real number  $X = .x_1 X_2 X_3 \dots$  such that  $X_i \neq f(i)_i$ e.g. Let  $X_i = \begin{cases} 0 & \text{if } f(i)_i \neq 0 \\ 1 & \text{if } f(i)_i = 0 \end{cases}$ X=. 1100 ....

Since x Not any row of table (by construction), f is Not a l-1 mapping. #

Proof Idea Let E= { 91}

- Every TM over E= {0,1} is encoded by a unique string <M> E E\*
- Thus every Turing recognizable language over {0,1} can be described/encoded by a string M> e ≤\* (the M that accepts L)
  Thus the set of all Turing-recognizcible languages is countable.
  But on the other hand the set of all languages over {0,1} is uncountable.
- Thus most languages  $L \in \Xi^{*}$  are not recognizable.

Theorem There exists a Language 
$$L = \{0,1\}^{\times}$$
 that is not re (recognitable)  
Pf (diagonalization)  
Fix an enumeration of all TMs over  $\{0,1\}$  using our encoding of TMs  
 $M_{1,2}, M_{2,3}, \dots$   
order lexitographically by their encodings (so  $\{M_1\} = \{M_2\} < \dots$ )  
Define  $D = \{\{M\}\} \ \langle M\}$  encodes TM M, and M on input  $\langle M\}$   
does not halt and accept  $\{M\}$ 

Define  $\overline{D} = \{ \langle M \rangle \mid \langle M \rangle \text{ encodes TM } M, and M on input < M \rangle accepts \}$ 



Claim D is recognizable / n.e. <u>Pf</u>: TM for D on injust <M> • Check to see if injust is legal encoding of a TM if not, reject • otherwise run M on <M>: If simulation halts and accepts → halt + accept Thus we have shown:

D is r.e.

D is not r.e.

## Question: Is D recursive / decidable?