Lecture 15

HW 3: Out NOV 6, DVE NOV 20

Today: Turing Machines (cont'd)
(1) Variants of TMS: Multitape TMS

Nondet TM
TM that compute functions
(2) Church - Turing Thesis
(3) Universal Turing Machines
U : tate us input $\langle\mathcal{M}, \underline{w}\rangle$

Recap from Last week
$T M \quad M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{a c c}, q_{r e j}\right) \quad \delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$子
$\underbrace{01101 B}_{W} B$

When we run M on w either: (i) M halts and accepts w
(ii) M halts and rejects w (iii) M never halts on w
$\mathscr{f}(M)=\left\{w \in \varepsilon^{*} \mid M\right.$ on w halts and accepts $\}$

Recursively Enumerable (RE) / Recognizable Languages
A Language $L \subseteq \Sigma^{*}$ is $R E$ or recognizable if there exists a TM M such that $f(M)=L$.

That is: $\forall w \in L \quad M$ on w halts and accepts, and $\forall W \& L M$ on w either halts a rejects or Never halts

Recursive / Decidable Languages

A Language $L \subseteq \Sigma^{*}$ is recursive or decidable if there exists a TM M such that $f(M)=L$ and M halts on all inputs

That is: $\forall w \in L \quad M$ on w halts and accepts and $\forall W \not L M$ on w halts and rejects

Equivalent TM Models $a \rightarrow b, \varepsilon$
(1) Head stays in place:

$$
\begin{aligned}
& \text { Now } \\
& \delta: Q \times r \rightarrow Q \times r \times\{L, R, \varepsilon\}
\end{aligned}
$$

Equivalent TM Models
(2) Multitape $T M_{5}$

Example: 3 tapes:
Tape 1
(input tape)
Tape 2
Tape 3

3 Tape TM $\mu=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{a c c}, q_{r e j}\right)$
where $\delta: \Gamma \times \Gamma \times \Gamma \times Q \rightarrow \Gamma \times \Gamma \times \Gamma \times Q \times\{L, R\} \times\{L, R\} \times\{L, R\}$
(2) Multitape $T M_{5}$

Example: $L=\left\{w \sharp w \mid w \in\{0,1\}^{*}\right\}$
High level?
(1) Copy string to Left of " $\#$ " on $2^{\text {nd }}$ tape
(2) Compare string to $u t$ of " $\#$ " to string on $z^{\text {rd }}$ tape. accept if they march.
（2）Multitape $T M_{5}$
Example：$L=\left\{w_{1} \sharp w_{2} \mid w_{1}=w_{2}\right\}$

We enlarged type aphenbet

$$
\Gamma=\{0,1, \#, B,
$$

聿极了

High level：
（1）Copy string to left of＂H＂on $2^{\text {nd }}$ tee
（2）Compare string to ut of＂\＃＂to string on $z^{\text {nd }}$ tape． accept if they march．

(2) Multitape $T M_{s}$

Example: $L=\left\{w \sharp w \mid w \in\{0,1\}^{*}\right\}$

* any missing transition goes to ares

(2) Multitape $T M_{s}$

Theorem Let $L \leqslant \varepsilon^{*}$ be accepted by a k-tape $T M, M$. Then L is also accepted by a 1-tgere $\tau M, M$.
And if M always halts, Then M^{\prime} always halts
Proof sketch
Suppose μ is a 3 -tape TM (general case is similar.) we will represent contents of all 3 tapes by a single tale as follows:

$$
M:
$$

$M^{\prime}:$

- on top of symbol denotes the head position
(2) Multitape $T M s$

Theorem Let $L \leqslant \Sigma^{*}$ be accepted by k-tape $T M, M=\left(Q, \varepsilon_{1}, \delta_{1} \delta_{1} q_{0}, q_{a c}, q_{r_{y}}\right)$ Then L is also accepted by a 1 -tape τM; M^{\prime}
Simulation of M by M^{\prime} on $w=w_{1} w_{2} \ldots w_{n}$:
(1) Put M^{\prime} in this form: $\||\dot{w}| w_{2}\left|w_{3}\right| \ldots\left|w_{n}\right| \#|\dot{B}| \#|\dot{B}| \#|B| B \mid \cdot$...
(2) To simulate one transition of μ : μ^{\prime} scan tape from first $\#$ to $4^{\text {th }} \#$ and remembers symbols under each tape head (by state we are in) Then make a second pass oven tape to update tapes according to M 's transition

Example

$$
\delta\left(q_{i}, 1,1,0\right) \rightarrow\left(q_{j}, 1,0,0, L, R, R\right)
$$

corresponding

$$
\begin{aligned}
& \begin{array}{l}
\operatorname{onding} \\
\text { states } f, M^{\prime}: \quad q_{i, j, k l}, \quad i, j, k \in \Gamma \cup \Gamma
\end{array} \\
& l \in Q
\end{aligned}
$$

(2) Multitape $T M s$

Theorem Let $L \leqslant \varepsilon^{*}$ be accepted by a k-tape $T M$, M. Then L is also accepted by a 1 -tape τM.
Simulation of M by M^{\prime} on $w=w_{1} w_{2} \ldots w_{n}$:
(1) Put M^{\prime} in this form: $\quad \#|\dot{w}| w_{2}\left|w_{3}\right| \ldots\left|w_{n}\right| \#|\dot{B}| \#|\dot{B}| \#|B| B \mid .$.
(2) To simulate one transition of μ : μ^{\prime} scan tape from first $\#$ to $4^{\text {th }} \#$ and remembers symbols under each tope head (by state we are in)
Then make a second pass oven tape to update tapes according to M^{\prime} 's transition
(3) If at any point M^{\prime} moves one of its 'virtual heads' to the right onto $a^{\prime} \#^{\prime}$ then M ' writes a ' B ' symbol here and shift tope contents from this cell one unit to right (and then continue simulation as before)
Example
shift over
$\#|a| \dot{a}|b| \#|a| b|b| \dot{b}|\#| \dot{a}|a| \#|c| a|a| \dot{b}|\#| a|b| b|b| \dot{B}|\#| a|\dot{a}| \# 1 \mid$

$$
\delta\left(q_{i}, a, b, a\right) \rightarrow q_{j}, a, b, a, R, R L
$$

Equivalent TM Models
(3) Nondeterministic TM

A nondeterministic $T M$ is described by: $\left(Q, \varepsilon, \Gamma, \delta, q_{0}, q_{a c c}, q_{r e j}\right)$ but now $\delta: Q \times \Gamma \rightarrow P_{\uparrow}(Q \times \Gamma \times\{L, R\})$
ponerset
So given a pair $\left(q_{i}, a\right)$ we can take 0,1 , or any number of transitions. (Note the total number of possible transitions from (q, a) is $\mid P\left(Q \times r \times\{L, R\} \mid=2^{|Q| \cdot|\Gamma| \cdot 2}\right.$
Theorem Let L be accepted by some Nondet $T M, M$ Then L is accepted by a deterministic $T M, M^{\prime}$ (and if M always halts, then M^{\prime} always halts)

Turing machines computing functions

Detn. An inpeet-output TM M is a tuple $\left(Q, \varepsilon_{1} r, \delta_{1} q_{\text {start }}, q_{\text {halt }}\right)$.
Or an input $w \in \varepsilon^{*}$, M runs on w cusing the transition function δ)

- M halts if it reaches the state Q halt $^{\text {hand the }}$ output is the string wontten on the tape up to the place where tope is all iB^{\prime} 's

- alternatively output is the string after ' $\$$ ' and up to the place where tape is all \&'s

Turing machines computing functions
Detn. An inpect-output TM M is a tuple $\left(Q, \varepsilon, r, \delta, q_{\text {start }}, q_{\text {halt }}\right)$.
Or an input $\omega \in \varepsilon^{*}, M$ runs on ω (using the transition function δ)
M halts if it reaches the state $q_{\text {halt }}$ and the output is the string wontten on the tape (op to the place where tope is all B's)

Deft $f: \Sigma^{*} \rightarrow \varepsilon^{*}$ is TM-computable if \exists cen input-output $T M$ such that $\forall \omega \in \sum^{*} \quad M$ on input w halts and outputs $f(w)$

Examples of Computable Functions (practice problems)
(1) On input n (represented in unary) output $n+1$ in unary \rightarrow give a 1 -toe $T \mu$.
ex: $\omega=1111$ ouput 1111
(2) On input n in binary notation output $n+1$ in binary
\rightarrow give a 1 tape $T M \quad W=011$ output 1000
(3) Insert $\#$ in beginning of input: $w \longrightarrow \neq W$ \rightarrow give a i-tge TM
(4) unary addition: $1^{n} \forall 1^{m} \rightarrow 1^{n+m}$
\longrightarrow give a $1-$ toque TM
(5) binary addition: $u \neq v \rightarrow w$ such that $u+v=w$ \rightarrow give a 3-tope or 1 -toe TM $E_{x} . \underbrace{0100 \#}_{u} \underbrace{0101}_{v}$ output $1001=w$
(6) binary multiplication: $u \neq v \longrightarrow w$ such that $u \cdot v=w$ \rightarrow HARDER give high level description of a k-tope TM

Church-Turing Thesis

Every reasonable model of computation can be simulated by a TM.

In other words, TMs can cornute any function that can be computed by any current / future computational device

