Lecture 13
Midterm: Monday Oct 23 in class
Midterm Review Session: Saturday 1-2 pm CSB451

Today: Midterm Review
Intro to Turing Machines / Computability

Review: Test 1
I. Regular Lanuages

DFA
NFA
Regular Expessions
Equivalence: Languages recosnized h_{y} DFAs
三Languages recognized ky NFAs
三Languages descibed by egular expressions
closure Properties of Regular Languases

Proving Languases not Ragular: Pumping Lemma

Review: Test 1
II. Context Free Languages

PD
CFo
Equivalence: Languages accepted by PDA - Languages generated by CFO's

Closure Properties of CFLs
Proving Languages not context Free:
Pumping Lemma for CEL's

Review: Test 1

Regular L's examples
All finite Languages

GEL
all regular languages
$L=\left\{\omega \omega^{R} \mid \omega \in\{0,1\}^{x}\right\}$

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

Midterm Formal 5-6 questions

- One True-False (~6 ह's)
- 2-3 short answer Q's
examples: sketch close prop. of Regular CFL sha some L is or isnit CFL question about pursing lemma question about $D F A \leftrightarrow N F A$
- $1 Q$: Construct NFA $\quad \operatorname{Reg} \in p \leftrightarrow N F A$

Regular Exp for some Language

- 1 Q: construct PDA/CEg
- 1Q: Pumping Lemma for Reg. Lang

Review Problems
(1.) Give a Reg Expression for $L_{1}=\left\{w \in\{0,1\}^{2}\right.$ (w ends in a 1 and does not contain substiony $\left.\mathrm{VO}^{\prime}\right\}$

- give a Res exp. for L,
- give DEA for h_{1}

Reg Expression for L_{1} T
Try 1: $(1+01)^{\star} 1$ doesub accept $O 1$

Ing $2 \quad(1+01)^{x} 1+(1+01)^{\infty} \quad \leftarrow$ accepts ε

$$
\frac{V \operatorname{Trg}^{3}\left((+01)^{8} 1+(1+01)^{*} 01\right.}{T_{1}: \underbrace{\varepsilon+(0+1)^{*} 0}_{\begin{array}{c}
\text { all string not } \\
\text { ending in a } 1
\end{array}}+\underbrace{(0+1)^{*} 00(0+1)^{*}}_{\begin{array}{c}
\text { all siring contain } \\
\text { consecutive os }
\end{array}}}
$$

Review Problems
DFA for $L_{p}=\{w \in 20,1\} 1 w$ ends in a 1 and does not contain substiony ' $\left.\mathrm{OO}^{\prime}\right\}$

DFA for L_{1} : as above but accept states are $\left\{q_{0}, \varepsilon_{1}, \varepsilon_{2}\right\}$ and not q_{3}

Review Problems
(2.) give a Reg. Expression for

$$
L_{z}=\left\{O^{i} j^{j} / L \text { is even, } j \text { is odd }\right\}
$$

$L_{2}=\left\{0^{i} 3^{j} \mid\right.$ i even, jud $\}$
Reg expression: $(00)^{*}$ I $(11)^{*}$
$L_{2}=\left\{\omega \mid \omega\right.$ is not of the form $\left.0^{i} j^{j}, \begin{array}{l}i \text { e un } \\ j \text { odd }\end{array}\right\}$
Reg exp: $O(00)^{*} 1(0+1)^{*}+O^{\pi}(11)^{x}$

$$
+(0+1)^{x} 10(0+1)^{x}
$$

DFA for $L_{2}=\left\{\omega / \omega=0^{i} 1^{j}, \begin{array}{l}i \text { is even, } \\ j \text { is odd }\end{array}\right\}$

DFA for L_{z} : just make all states rut 2 accept stakes

Review Problems
(3.) Is this Language regular?

$$
L_{3}=\left\{0^{m} 1^{n} \mid m=5 n\right\}
$$

Review Problems
(3.) Is this Language regular?

$$
L_{3}=\left\{0^{m} 1^{n} \mid m=5 n\right\}
$$

No.
Proof: use PL for CFL's.

Review Problems
(4) Is this language regular?

$$
L_{4}=\left\{0^{m} \mid \exists n \text { such that } m=5 n\right\}
$$

Review Problems
(4.) Is this language regular?

$$
L_{4}=\left\{0^{m} \mid \exists n \text { such that } m=5 n\right\}
$$

Yes. L_{4} = string O^{m} where m is a multiple of 5

NA:

Reg Exp: $S \rightarrow \varepsilon 100000 S$

Review Problems
(5). give LEy for $L_{5}=\left\{w \in\{a, b\}^{*}\right.$ (w has twice as many a 's as 6's $\}$

* Tins question is reg hard.

I've pronded a solution if you are interested beet this goes way beyond what you are expected to knar.
(So you can ignore this question!)

Review Problems
(5). give $C E y$ for $L_{g}=\left\{w \in\{a, b\}^{*}\right.$ (w has trine as many a's as 6's $\}$

Try 1

$$
S \rightarrow a a S b\left|b S a a \int a S a b\right| a S b a \mid \varepsilon
$$

Doesn't accept bade b

Review Problems

Try 2

$$
S \rightarrow \text { Sasasbs } \mid \text { Sasbsas/sbsasas } / \operatorname{SS} / \varepsilon
$$

This only generates string in L_{S} But does it generate all strings in L_{5} ?

Does it generate: aadaaa bbb?
Yes $\quad s \rightarrow a a s b \rightarrow$ alas bb \rightarrow aaaaaabbb

Try 3

$$
\begin{aligned}
& S \rightarrow S S|A b A| \text { bSaa |aaSb|ع} \\
& A \rightarrow a S \mid S A
\end{aligned}
$$

Let $w \in L_{5}$, and $s a y|w|=n$. We know: $\left(2 \cdot\left(\# b^{\prime} s\right)-\left(\# a^{\prime} s\right)\right)=0$

Let $f^{w}(i)=2 \times\left(\# b^{\prime}\right.$ s in $\left.w_{1} \ldots w_{i}\right)-\left(\neq a^{\prime} s\right.$ ir $\left.w_{1} . . w_{i}\right)$
we know $f^{w}(0)=0$, and $f^{w}(n)=0$

Let $w \in L_{5}$, end say $|w|=n$. We know: $\left(2 \cdot\left(\# b^{\prime} s\right)-\left(\# a^{\prime} s\right)\right)=0$

$$
n=|w|=9
$$

$$
f(i)=2 \times\left(\# b^{\prime} \text { s in } w_{1} \ldots w_{i}\right)-\left(\# a^{\prime} s \text { ir } w_{1} \ldots w_{i}\right)
$$

we know $f(0)=0$, and $f(n)=0$

Let $w \in L_{5}$, and say $|w|=n$. We know: $\left(2 \cdot\left(\# b^{\prime} s\right)-\left(\# a^{\prime} s\right)\right)=0$ example $\omega=a a a b b b a a a$

$$
n=|w|=9
$$

$$
f(i)=2 *\left(A b \text { s in } w_{1}-w_{i}\right)-\left(\# a^{\prime} s \text { in } w_{1}, \ldots w_{i}\right)
$$

we know $f(0)=0$, and $f(w)=0$

Case $1 \quad w=x y z$ where $f(x)>0 \quad f(x y)<0$ each time we add one character to x we either increase $f^{\prime \prime}$ by 2 or decrease f^{ω} by 1 , so we can split into $y_{1} y_{2}$ such that $c\left(x y_{1}\right)=0$. thew can by inductor generate $X Y_{1}$, from S, and $Y_{2} z$ from S.
Case $2 w^{w}=x y z$ where $f^{w}(x)<0, f^{w}(x y)>0$ (like example colone) then can always split y into $y_{1} y_{2}$ such that either (i) $f(x, y)=0$ or (ii) $f\left(x y_{1}\right)=-1$ and y_{2} starts with b

Let $w \in L_{5}$, end say $|w|=n$. We know: $\left(2 \cdot\left(\# b^{\prime} s\right)-\left(\# a^{\prime} s\right)\right)=0$ example $\omega=$ aaabbb aaa, $n=|\omega|=9$

$$
f(i)=2 *\left(\# b \text { bs in } w_{1} \ldots w_{i}\right)-\left(\neq a^{\prime} s \text { in } w_{1}, \ldots w_{i}\right)
$$

we know $f(0)=0$, and $f(w)=0$

Case $1 \quad w=x y z$ where $f(x)>0 \quad f(x y)<0$
each time we add one character to x we either increase f^{w} by 2 on decrease f^{ω} by 1 , so we can split into $y_{1} y_{2}$ such that $c\left(x y_{1}\right)=0$. thew can by induction generate $x y_{1}$ from S, and $Y_{2} z$ from S.
Case $2 w^{2}=x y z$ where $f^{w}(x)<0, f^{w}(x y)>0$ (like example above) then can always split y into $y_{1} y_{2}$ such that either (i) $f(x, y)=0$ or (ii) $f\left(x y_{1}\right)=-1$ and Y_{2} starts with b
if ii holds then can generate $x y_{1}$ from s and $y_{2} z$ from S
If (ii) holds then $w=w_{1} b w_{2}$ where $f\left(w_{1}\right)=f\left(w_{2}\right)=-1$

$$
\text { (in our example } \frac{a a b}{w_{1}} \frac{b a a a}{w_{2}}=w \text {) }
$$

then generate ω by: $S \rightarrow A b A$, where A generates any x $w+h f(x)=-1$

Let $w \in L_{5}$, end say $|w|=n$. We know: $\left(2 \cdot\left(\# b^{\prime} s\right)-\left(\# a^{\prime} s\right)\right)=0$ example $\omega=$ aaabbb asa, $n=|\omega|=9$

$$
f(i)=2 \times\left(H b^{\prime} s \text { in } w_{1} . w_{i}\right)-\left(\neq a^{\prime} s \text { in } w_{1}, \ldots w_{i}\right)
$$

we know $f(0)=0$, and $f(w)=0$

Case $1 \quad w=x y z$ where $f(x)>0 \quad f(x y)<0$
each time we add one character to x we either increase $f^{\text {wi }}$ by 2 on decrease f^{ω} by 1 , so we can split into $y_{1} y_{2}$ such that $C\left(x y_{1}\right)=0$. thew can by induction generate $x y_{1}$ from S, and $y_{2} z$ from S.
Case $2 w^{w}=x y z$ where $f^{w}(x)<0, f^{w}(x y)>0$ (like example cebove) then can always split y into $y_{1} y_{2}$ such that either (i) $f(x, y)=$, or (ii) $f\left(x y_{1}\right)=-1$ and Y_{2} starts with b

Case 3 If cases (1) $+(2$) cont had then other $w=b \times a a$ or ax.
If $w=b x a a$. Then generate w by: $S \rightarrow b$ Sad, andinducticely

$$
S \stackrel{*}{\Rightarrow} x
$$

Similarly if $w=a a x b$ then use $S \rightarrow a a S b$, and induchely $S \stackrel{*}{\Rightarrow} x$

Review Problems
(6.) Inv a CFS for

$$
L_{6}=\left\{x_{1} H x_{2} \# \ldots \# x_{k} \mid k \geq 1 \text { and } x_{2}=x_{j}^{R} \text { for some } i, j\right\}
$$

Note: Solution has been corrected

Review Problems
(6.) give a CFS for

$$
\begin{aligned}
& L_{6}=\left\{x_{1} H x_{2} \# \ldots \# x_{k} \mid k \geqslant 1 \text { and } x_{2}=x_{j}^{R} \text { for some } i_{j}\right\} \\
& S \rightarrow L B R \mid \angle C R \\
& C \rightarrow a C a|b C b| a|b| \varepsilon \leftarrow \text { generates palindromes }
\end{aligned}
$$

$B \rightarrow a \mathrm{Ba\mid} \mid \mathrm{bBb\mid} \| L \leftarrow$ generates $\omega \# \omega_{1} \# \omega_{2} \cdots \# \omega_{k} \# \omega^{R}$ for any k
$L \rightarrow A \# L 1 \varepsilon_{4} \quad w_{1} \# w_{2} \# \ldots$.. \# $w_{K} \#$ for any k
$R \rightarrow \# A R \mid \varepsilon$ $w_{1} \# w_{2} \# \ldots w_{k} \#$ for any k
$\# w_{1} \# w_{2} . . \# w_{l} \quad$ for any l

LBR: generates $x_{1} \# x_{2} \# \ldots . . 月 w_{k}$ such that $w_{2}=w_{j}^{R}$ for some $i \neq j$ LCR: " such that $w_{i}=w_{i}^{R}$ for somme i

Review Problems
(7.) give PDAs for Questions 6-7

Are these Languages regular?

