Lecture 12

HF 2 due tonight

- HW1 - graded (see gradescope)
* Submusions for regrading of HW1 due by Oct 25 11:59 pm

Note: requesting a remark could make your mark go up or down or stay unchanged.

Min: $18 / 60$
Median : $49 / 60$
Max: $60 / 60$
Mean: $47.21 / 60$
Solutions to HWI are posted

Lecture 12

HF 2 due tonight

- HW1 - graded (see gradescope)
* Submissions for regrading of HW1 due by Oct 26

Note: requesting a remark could make your mark go up or down or stay unchanged.

- Review of CFL's and Solis to extra problems: posted
- Review Session for Test 1: Saturday Oct 21, 1- 2pm CSB 451 Review Problems will be posted Tuesday
- Today: Equiv. between CFg + PDA

Context - Free Languages a PushDamn AUtomatic
Now we will define a larger class of languages that includes all regular languages plus new ones.
\checkmark (1) We will first define CFL's to be those Languages accepted by PUSHDOWN AVTOMATA (PDA)
(2) Then we give an alternative characterization of CFLS Language l generation Model: Context Free grammars (CFgs) TODAY! (2a) We will prove these 2 characterizations are equivalent: $\underbrace{\substack{\text { PUSHDOWN AUTOMATA (FDA) }}}_{\text {Machine Model }} \equiv \underbrace{\text { context Free grammars (cAys) }}_{\text {Language (Generation Mode) }}$
(3) Pumping Lemma (for CFL's): used to prove that some languages are not context Free Languages
(2a) Equivalence of $P O A$ and $C F g^{\prime}$'s
Theorem 1 If L has a CF then there exists a PDA M accepting L.
Theorem 2 If L is accepted by a PDA, then L has a CFG.

$$
C F g \Rightarrow P D A
$$

Theorem 1 If L has a CFy then there exists a PDA M accepting L.
Proof sketch: Let g be a CF. We show how to convert g into a PDDA, Mg. such that the language $L(g)$ generated by $g=L\left(M_{g}\right)$
Informal description of M_{g} on input w :

- Put '\$s on stack
- Put start symbol, s, of g on stack
- Repeat (until all of w is processed)
- If top of stack is a terminal symbol $a \in \Sigma$, read Next symbol from w, if they do nt match reject
- If top of stack is a variable symbol $A \in \Gamma$ won deterministically guess a rule for A, say $A \rightarrow U$ and substitute A on the stack by u (in reverse order)
- If top of stack is '\$' enter accept state.

Say w is gererated by $g=(v, \Sigma, R, s)$

$$
S \rightarrow \infty 0 S|\underbrace{115}| \sum_{T}^{\sum}
$$

$$
\rightarrow 00 \mathrm{~S} \rightarrow 0011 \mathrm{~S} \rightarrow 001100 \mathrm{~S} \rightarrow 001100
$$

$$
C F g \Rightarrow P D A
$$

Let $g=(\varepsilon, \Gamma, s, R)$
M_{g} : States are $Q=\left\{q_{\lambda}, q_{\text {start }}, q_{T}\right.$ accept $\} \cup E$
stark state \uparrow
accept state

$\varepsilon, A \rightarrow \mu$ for every rule $A \rightarrow M$ $a, a \rightarrow \varepsilon$ for terminal $a \in \Sigma$

$$
C F g \Rightarrow P D A
$$

Let $g=(\varepsilon, \Gamma, s, R)$

abbrenation (see wext slide)
$\varepsilon, A \rightarrow W$ for every rule $A \rightarrow W$ $a, a \rightarrow \varepsilon$ for terminal $a \in \Sigma$

$$
C F g \Rightarrow P D A
$$

Shorthand Notation

$$
\begin{aligned}
& a \in \sum \cup \varepsilon \\
& A \in \varepsilon \cup \Gamma \cup \varepsilon \\
& v_{1}, \ldots, v_{k} \in \sum \cup \Gamma \cup \varepsilon
\end{aligned}
$$

means if in state ε, Next input symbol read is a, and s is top symbol on stack we pop $s_{\text {, }}$ push $v_{1} \ldots v_{k}$ on stack and move to state r

Example

stack
 input $w=01101$

$$
C F g \Rightarrow P D A
$$

Implementing this transition:

$$
\begin{aligned}
& a \in \sum \cup \varepsilon \\
& A \in \varepsilon \cup \Gamma v \varepsilon \\
& v_{1}, \ldots v_{k} \in \sum \cup \Gamma \cup \varepsilon
\end{aligned}
$$

means if in state q, Next input symbol read is a, and s is top symbol on stack we pop $s_{\text {, }}$ push $v_{1} \ldots v_{k}$ on stack and move to state r

Previous example:
(2) $\xrightarrow{1, s \rightarrow 151} 0$ abbreviates:
(q) $\xrightarrow{1,5 \rightarrow 1} \bigcirc \xrightarrow{\varepsilon_{\varepsilon} \varepsilon s} \bigcirc \xrightarrow{\varepsilon, \varepsilon \rightarrow 1}(\Gamma$

Let $g=(\varepsilon, \Gamma, S, R) R: S \rightarrow \varepsilon \mid O S 1$
Example

(See Example 2.14 in Book for cenother more complicated example)

Example:

$$
\begin{aligned}
& \rightarrow \omega=0001111 \\
& \begin{aligned}
& \mathrm{S} \rightarrow 0 \mathrm{~S} \rightarrow 00 \mathrm{~S} \rightarrow 000 \mathrm{~S} \\
& \rightarrow 00011 \mathrm{~S}
\end{aligned} \\
& \text { PDA } \quad \rightarrow 0001111
\end{aligned}
$$

$$
\underline{C F g} \rightarrow P D A
$$

Theorem 1 If L has a CFy then there exists a PDA M accepting L.

Theorem (Proof of correctness)
Let $g=(\varepsilon, \Gamma, S, R)$ be a CFg generating L, and Let M_{g} be the PDA defined in previous slides.
then: (1) $\forall w \in L, M$, generates w
(2) $\forall w \& L, M$, does not generate w (Prot omitted - see book)

$$
P D A \rightarrow C E G
$$

Theorem 2 If L is accepted by a PDA, then L has a CFY.
Pf skefch Assume $M=\left(Q, \xi, \Gamma, \delta_{1}, \varepsilon_{0}\right.$, \{qaccept $\left.\}\right)$.
Modify M sligntly so that it has these properties a still accepts L :
M has a single accept stare, qaccept
M emplies its stack before accepting
Every transition either pushes one symbol onto stack or pops one symbol but Not both

Constructing grammar g_{μ} from M :
For every pair of states $p_{1} q \in Q$ we hace a variable $A_{p q}$ Our rules will guarantee that $A_{p q}$
will generate exactly the set of all strings wC \sum^{*} that can take M from stare p (on eupt stack) same as to state q (on empty stack) contents

Converting M to M^{\prime} that only pushes or pops one symbol to/from stack at each stor.

Say initially had transition

$$
(1) \text { becomes }
$$

$$
P D A \rightarrow C E g
$$

Theorem 2 If L is accepted by a PDA, then L has a CFG.
Pf sketch Assume $M=\left(Q, \Sigma, \Gamma, \delta_{1}, \varepsilon_{0},\left\{q_{\text {accept }}\right\}\right)$.
variables of $g:\left\{A_{p q} \mid p, q \in Q\right\}$ Start variable: $A_{q_{0} q_{\text {accept }}}$

1. For each $p \in Q$ add the rule $A_{P P} \rightarrow \varepsilon$
2. For each $p, q, r \in Q$ add the rule $A_{p q} \rightarrow A_{p r} A_{r q}$
3. For each $p, q r_{1} s \in Q$, add rule $A_{p q} \rightarrow a A_{r s} b$ if read a, push $u \rightarrow(r, t \in \in \delta(p, a, \varepsilon)$ read b pop $(q, \varepsilon) \in \delta(s, b, t)$ neal b, pop u

Example $L=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$

CFg: Start vanable: A_{14}

$$
A_{11} \rightarrow c ; A_{22} \rightarrow \varepsilon ; \quad A_{33} \rightarrow \varepsilon ; A_{44} \rightarrow \varepsilon
$$

$$
A_{11} \rightarrow A_{11} A_{11}\left|A_{12} A_{21}\right| A_{13} A_{31} \mid A_{14} A_{41}
$$

$$
A_{12} \rightarrow A_{11} A_{12}\left|A_{12} A_{22}\right| A_{13} A_{32} \mid A_{14} A_{42}
$$

$$
A_{3} \rightarrow A_{11} A_{13} \mid A_{12} A_{23}\left(A_{13} A_{33} \mid A_{14} A_{43}\right.
$$

$$
\begin{aligned}
& A_{42} \rightarrow A_{41} A_{12}\left|A_{42} A_{22}\right| A_{43} A_{32} \mid A_{44} A_{42} \\
& A_{43} \rightarrow A_{44} A_{13}\left|A_{42} A_{23}\right| A_{43} A_{43} \mid A_{44} A_{43} \\
& A_{44} \rightarrow A_{41} A_{14}\left(A_{42} A_{24} \mid A_{43} A_{34} / A_{44} A_{44}\right.
\end{aligned}
$$

(玉) read 0, pusho $\left(a_{2}\right) \rightarrow\left(a_{2}\right)$

$$
A_{23} \rightarrow 0 A_{22}| | O A_{23} \mid
$$

$$
A_{14} \rightarrow \varepsilon A_{23} \varepsilon
$$

read 1, popo
read 1 popo
read \& pop $\$$

Example $L=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$

Note: Any stale $A_{p q}$ such that q is Not reachable at all from p can be remould.
Removing these, useless vars and associated rules we are left moth:
Start var: A_{14}

$$
\begin{aligned}
& A_{11} \rightarrow c ; A_{22} \rightarrow \varepsilon ; \quad A_{33} \rightarrow \varepsilon ; A_{44} \rightarrow \varepsilon \\
& A_{11} \rightarrow A_{11} A_{11} \quad A_{22} \rightarrow A_{22} A_{22} \quad A_{33} \rightarrow A_{33} A_{33} \quad A_{44} \rightarrow A_{44} A_{44} \\
& A_{12} \rightarrow A_{11} A_{12} \mid A_{12} A_{22} \\
& A_{3} \rightarrow A_{11} A_{13} \mid A_{12} A_{23}\left(A_{13} A_{33}\right. \\
& A_{23} \rightarrow A_{24} A_{34} \\
& A_{24} \rightarrow A_{23} A_{34} \\
& A_{34} \rightarrow A_{33} A_{34}\left(A_{34} A_{44}\right. \\
& A_{23} \rightarrow O A_{22}| | O A_{23} \mid \\
& A_{14} \rightarrow \varepsilon A_{23} \varepsilon \longrightarrow \begin{cases}\text { read } \varepsilon, \text { push } \\
q_{1} \rightarrow\left(\varepsilon_{2}\right. & \begin{array}{l}
\text { read } \varepsilon, \text { pop } \$ \\
\left.q_{3}\right) \rightarrow\left(q_{4}\right)
\end{array}\end{cases}
\end{aligned}
$$

Example $L=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$

Further simplifying (e.g., $A_{11} \rightarrow \varepsilon\left(A_{11} A_{11}\right.$ is same as $A_{11} \rightarrow \varepsilon$)

Start var: A_{14}

