Min: 18/60 Median: 49/60 Max: 60/60 Mean: 47.21/60

solutions to HWI are posted

- · Review of CFL's and Solves to extra problems: posted
- Review Session for Test 1: Saturday Oct 21, 1-2pm CSB 451 Review Problems will be posted Tuesday
- · Today: Equiv. between CFg + PDA

(2a) Equivalence of PDA and CFG's

Theorem 1 If L has a CFg then there exists a PDA M accepting L. Theorem 2 If L is accepted by a PDA, then L has a CFG.

Theorem 1 If L has a CFg then there exists a PDA M accepting L. Proof sketch: Let g be a CFg. We show how to convert g into a PDA, Mg. such that the language L(g) generated by $g = L(M_g)$ Informal description of Mg on input w: · Put '\$' on stack · Put start symbol, s, of g on stuck · Repeat (until all of wis processed) . If top of stack is a terminal symbol at ϵ , read next symbol from w, if they don't match reject If top of stack is a variable symbol A ∈ P wondeterministically guess a rule for A, say A→u and substitute A on the stack by u (in reverse order) • If top of stack is '\$ ' enter accept state.

Say wis generated by g=(V, Z, R, S) S-)00S/IIS/E W = 00%000 $S \rightarrow 00S \rightarrow 0011S \rightarrow 001100S \rightarrow 001100$

$$CFg \implies PDA$$
Let $g = (\Xi, \Gamma, S, R)$

$$M_g : \text{States are } Q = \{ 2 \text{ start }, 2_{loop}, 2 \text{ accept } \} \cup E$$

$$\text{start state } accept \text{ state}$$

CF9 => PDA

means if in state e_{i} , next input symbol read is a_{i} , and s is top symbol on stack we pop s, push $V_{..}V_{k}$ on stuck and move to state r

$$CFg \Rightarrow PDA$$

Implementing this transition:
 $(9) \xrightarrow{a, A \rightarrow V_{1, y, y}V_{K}} (c)$

means if in state e_{i} , next input symbol read is a_{i} and s is top symbol on stack we pop s, push $V_{i}.V_{k}$ on stuck and move to state r

Previous example: 9. $15 \rightarrow 151$ abbruiates: 9. $1,5 \rightarrow 1$ $\xi \in -75$ $\xi \in -1$ $(9, 1,5 \rightarrow 1)$ $(9, 1,5 \rightarrow 1)$ (9

Example

 $S \rightarrow OS | IIS | E$

AM = DOOILII

 $05 \rightarrow 005 \rightarrow 0005$ S -) 00011S 0001111 PDA st 15 1 2 0 1 2 0 1 2 10 4 104 Q, AS A Ś 2 するす \$ \$ Ł

Theorem 1 If L has a CFg then there exists a PDA M accepting L.

Theorem (Proof of correctness)
Let
$$g = (z, \Gamma, S, R)$$
 be a CFg generating L,
and Let M_g be the PDA defined in previous slides.
then: (1) $\forall w \in L$, M , generates w
(2) $\forall w \notin L$, M_g does not generate w

(Prod omitted - see book)

PDA -> CEg
Theorem 2 If L is accepted by a PDA, then L has a CFG.
Pf sketch Assume
$$M = (Q, \Xi, \Gamma, S, E_0, \frac{5}{2}acceptS)$$
.
Modify M slightly so that it has these properties t still accepts L:
M has a single accept state, 2acept
M emphies its stack before accepting
Every transition either pushes one symbol onto stack or pops one symbol
but Not both

Constructing Grammar Gn from M:
For every pair of states
$$p_1 q \in Q$$
 we have a variable A_{pq}
Our rules will guarantie that A_{pq}
will generate exactly the set of all strings we z^{*}
that can take M from stale p (on empty stack) Same as
to state q (on empty stuck) Same stack
Same stack

$$PDA \rightarrow CEg$$

$$\frac{Theorem 2}{If L is accepted by a PDA, then L has a CEg.$$

$$Pf \underline{sketch} Assume M = (Q, \Xi, \Gamma, S, Z_0, \underline{s}2acceptS).$$

$$Variables \underline{steg} : \underline{start Variable} : A_{2g}2accept$$

1. For each
$$p \in Q$$
 add the rule $A_{pp} \rightarrow \varepsilon$
2. For each $p : q : r \in Q$ add the rule $A_{p2} \rightarrow A_{pr} A_{rq}$
3. For each $p : q : r \in Q$, add rule $A_{p2} \rightarrow A_{pr} A_{rq}$
read q , push $u \rightarrow (r, t) \in S(p; a, \varepsilon)$
read q , push $u \rightarrow (r, t) \in S(p; a, \varepsilon)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push $u \rightarrow (r, t) \in S(r; h, t)$
read q , push q

Example
$$L = \{0^n, 1^n \mid n \ge 1\}$$

 $\{2, 1^{\circ}, 1^{\circ}, 2^{\circ}, 2^{\circ$

$$crg: Start vandble: A_{14}$$

$$A_{11} \Rightarrow c_{1}^{*} A_{22} \Rightarrow \varepsilon_{1}^{*} A_{33} \Rightarrow \varepsilon_{1}^{*} A_{44} \Rightarrow \varepsilon$$

$$A_{11} \Rightarrow A_{11} A_{12} A_{21} (A_{13} A_{31} | A_{14} A_{41})$$

$$A_{2} \Rightarrow A_{11} A_{12} (A_{12} A_{22} | A_{13} A_{32} | A_{14} A_{42})$$

$$A_{2} \Rightarrow A_{11} A_{12} (A_{12} A_{22} | A_{13} A_{32} | A_{14} A_{42})$$

$$A_{3} \Rightarrow A_{4} A_{3} | A_{12} A_{23} (A_{43} A_{32} | A_{44} A_{42})$$

$$A_{42} \Rightarrow A_{41} A_{12} (A_{42} A_{22} | A_{43} A_{32} | A_{44} A_{42})$$

$$A_{42} \Rightarrow A_{41} A_{12} (A_{42} A_{22} | A_{43} A_{32} | A_{44} A_{42})$$

$$A_{42} \Rightarrow A_{41} A_{12} (A_{42} A_{22} | A_{43} A_{32} | A_{44} A_{42})$$

$$A_{42} \Rightarrow A_{41} A_{14} (A_{42} A_{22} | A_{43} A_{32} | A_{44} A_{42})$$

$$A_{42} \Rightarrow A_{41} A_{14} (A_{42} A_{22} | A_{43} A_{32} | A_{44} A_{42})$$

$$A_{42} \Rightarrow A_{41} A_{14} (A_{42} A_{22} | A_{43} A_{33} | A_{44} A_{42})$$

$$A_{23} \Rightarrow O A_{22} i (A_{33} A_{34} | A_{44} A_{44})$$

$$A_{14} \Rightarrow \varepsilon A_{23} \varepsilon$$

$$read c_{1} pop c$$

$$A_{14} \Rightarrow \varepsilon A_{23} \varepsilon$$

$$read c_{1} pop f$$

$$A_{14} \Rightarrow \varepsilon A_{23} \varepsilon$$

•

Example
$$L = \{o^{n} i^{n} | n \ge i\}$$

Note: Any state A_{p2} such that q is not
reachable at all from p can be removed.
Removing these useless vars and associated rules ve are left with:
Start var: A_{14}
 $A_{11} \Rightarrow C_{1}^{n} A_{22} \Rightarrow E_{2}^{n} A_{33} \Rightarrow E_{2}^{n} A_{44} \Rightarrow E_{1}^{n} A_{12} A_{12} A_{22}$
 $A_{12} \Rightarrow A_{11}A_{12}A_{22}$
 $A_{23} \Rightarrow A_{23}A_{24}$
 $A_{24} \Rightarrow A_{23}A_{24}$
 $A_{24} \Rightarrow A_{23}A_{24}$
 $A_{24} \Rightarrow A_{23}A_{24}$
 $A_{24} \Rightarrow A_{23}A_{24}$
 $A_{23} \Rightarrow 0A_{22}I | 0A_{23}I$
 $A_{14} \Rightarrow EA_{23}E$
 $A_{14} \Rightarrow EA_{23}E$

Further simplifying (e.g.,
$$A_{11} \rightarrow \varepsilon \left[A_{11} A_{11} \text{ is same} \right]$$

as $A_{11} \rightarrow \varepsilon \left[A_{11} A_{11} + \varepsilon \right]$

$$\begin{array}{c} \xi_{1} \xi \rightarrow \\ \xi_{2} \\ \xi_{2} \\ \xi_{3} \\ \xi_{4} \\ \xi_{5} \\ \xi_{$$

Start var:
$$A_{14}$$

 $A_{11} \rightarrow E_{1}^{*}$, $A_{22} \rightarrow E_{2}^{*}$, $A_{33} \rightarrow E_{2}^{*}$, $A_{444} \rightarrow E$
 $A_{33} \rightarrow A_{12}A_{33}$
 $A_{23} \rightarrow A_{24}A_{34}$
 $A_{24} \rightarrow A_{23}A_{34}$
 $A_{23} \rightarrow OA_{22}I \mid OA_{23}I$
 $A_{14} \rightarrow EA_{23}E$
 $Ieft with just these$
 $read c push c read 1, popo
 $(2) \rightarrow (2)$
 $read c push c read 1, popo
 $(2) \rightarrow (2)$
 $read c, pop s$
 $(2) \rightarrow (2)$
 $(2) \rightarrow (2)$$$