Lecture 11

- HW2 due Monday Oct 16

Today: Practice Problems
(Pumping Lemma, PDA, MFg's)
Next
Week $\left\{\begin{array}{l}\text { MON: Equivalence Between PDA and CFgs } \\ \text { Wed: Review for Test } 1\end{array}\right.$
10/23 $\{$ MON: Test 1 (in class)

Pumping Lemma for Context Free Languages
Lemma Let $L$ be a CFL, $L \subseteq \sum^{*}$
Then there exists a number $p \geqslant 0$ such that for any string $w \in L,|w| \geqslant p, \exists$ strings $u, v, x, y, z \in \sum^{*}$ such that:
(0) $w=u v x y z$ and
(1) $|v x y| \leqslant p$ and $|v y| \geq 1$ and
(2) For every $i \geq 0, w^{i}=u v^{i} x y^{i} z$ is also in $L$.

Pumping Lemma for regular Languages: $\exists p \ldots|w| \geqslant p$ can wite $w=x y z,|x y| \leqslant p,|y| \geqslant 1$ such that $\forall i \quad w \in L$ if $w^{i}=x y^{i} z \in L$

Example 1 we will show $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is wot a $C E L$.
Let $w=a^{2 p} b^{2 p} c^{2 p}$, where $p$ is from the pumping emma
then By pumping Lemma $w=u v x y z,|\sim x y|<p, \quad|v y| \geq 1$
Case 1: V and y contain only a's. Then $u v^{2} x y^{2} z \mathrm{mll}$ contuir too many a's
Case 2: $v$ and 4 contain ont $b$ 's or $m l^{c}$ c's.
same arg as case 1
Case 3 and 1 together contain both a's and $b$ 's. then $u V^{2} x y^{2 z}$ will contain too few $C^{\prime} s$. similar it $v$ and $y$ together contain bi's a c's

There are no other cases since $\mid v x y l<p$ so vxy cart contain all three symbols $a, b, c$

Example 2 $L=\left\{r \# s\left\{r_{1} s \in\{0,1\}^{*}\right.\right.$ and $r$ is a substring $\left.G^{*}\right\}$
Let $p$ be purpinglength; Let $\left.w=O^{p} 1^{p} \# 0^{p}\right]^{p} \in \mathcal{L}$.
then $w=u v x y z, \quad|v x y| \leq p, \quad|v y| \leq 1$
Case $1 v$ contains \#. Then $w^{2}=u v^{2} x y^{2} b$ has $2 \notin$ 's so $\& 2$
case 2 " \#. Same argument as case 1
Case $3 u$ contains \#- then $w^{\circ}=4 v^{\circ} x y^{\circ} z$ has fewer
symbols after the \# than before so $w^{\circ} \# L$
case $\varphi z$ contains \# then $w^{2}=u v^{2} x y^{2} z$ has more than $2 p$ symbols bettor "甘" and $2 \rho$ after "甘" so $\forall L$

Case $5 \times$ contains \#
case (Fa): $V \neq \varepsilon$
Case $\left(S_{b}\right): V=\varepsilon$. then $y \neq \varepsilon$. So $w^{\circ}=u v^{\circ} x y^{0} z$ has more, syminds to rect of $\&$ than to right

Example 3 $L=\left\{0^{n} 1^{m} 0^{n} 1^{m} \quad(n, n \geq 0\}\right.$
Led $p$ be pumping length, $w=0^{p} 1^{p} o^{p} 1^{p}$.
then $w=u v x y z, \quad|v x y| \leqslant p \quad|v y| \geq 1$
case 1 vxy in some o-block or in some 1-block (vxy all o's or all 1's) $\omega^{2}=u v^{2} x y^{2} z$ then $w^{2}$ has 3 blocks of length $p$ and one block of length $s p$.
Case $2 \vee$ in two blocks, or $Y$ in two blocks, then $w^{2}=u v^{2} x y^{2} z$ has 6 blocks of alternating o's and 1 's.
Case 3 V in one block, $y$ in Next block. Then since either $r$ or $y^{\text {is }}$ wo nempty, either the 2 blocks of o's in $u v^{2} x y^{2} z$ have different lengths or the $I$ blocks of I's in $u v^{2} x y^{2} z$ have different lengths

Example $4 ~ L=\left\{w \mid w=s \cdot s, s \in\{0,1\}^{*}\right\}$
st try: $w=O^{P} 1, O^{P} 1, \in L$.

$$
\text { suppose } w=\underbrace{000}_{u} \underbrace{0}_{v} \underbrace{1}_{x} 000 \cdots 01
$$

then $w^{i} \in L$ for all $i$, so this choile of $w$ wort work to prove $L$ not CFL

Example 4$) L=\left\{w \mid\right.$ sis, $\left.s \in\{0,1\}^{*}\right\}$
$2^{N l}$ try: $\quad W=O^{P} 1^{P} O^{P} 1^{P}$.
then $w$ can be written as $w=u v x y z, \quad|v x y| \leqslant p, \quad(v y \mid \geq 1$ write $w=a b c d, a=0^{p}, b=1^{p}, c=0^{p}, d=1^{p}$

Case 1 vxy is a substring of $a$. Then $w^{2}=u v^{2} x y^{2} z$ is of the form $a^{\prime} b c d$, where $\mid a^{\prime}(<p$ so Not in $L$
Same argument if bey is a substring of $c$
Case 2 by is a substring of $b$. Then $w^{2}$ is of the form $a b^{\prime} c d$ where ${L D^{\prime}}^{\prime}(<p$, so Not in $L$. Same argument if bay is a substring of $d$
$\xrightarrow{\text { Case } 3}$ vxy is a shbstring of abs (containi, at least one 0 tone 1) then $w^{2}=u v^{2} x y^{2} z$ has too many groups of $1^{\prime} s$ similar arg if bey a shining $q b c$, or of $c d$ Note this corers all cases since $|v x y| \leqslant p$.

Another way to prove that a Language is not context-free is by using closure properties.
(1.) Context free Languages are closed under union:

If $L_{1}$ and $L_{2}$ are both condent-free then so is $L=L_{1} \cup L_{2}$
(2) CFL's are closed under intersection with a regular Language: If $L_{1}$ is a $C F L$, and $L_{2}$ is a regular Langrage, then $L=L_{1} \cap L_{2}$ is also CEL.
(3) CFL's closed under concatenation
(1) For $L_{1} \cup L_{2}$

Prong for PDA (closed under union) essentially same us proof Reg Lang's closed under union.


Q: Sypose $L_{1}$ is senerated by $C F g g_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$

$$
L_{2} \quad \text { " } \quad g_{2}=\left(v_{2}, \xi R_{2}, s_{2}\right)
$$

How de ue Consinuct a $c F g, g$, for $L_{1} \cup L_{2}$ ?

$$
\begin{aligned}
& g=(V, \Sigma, R, s) \\
& \\
& \quad V=V_{1} \cup V_{2} \cup\{s\} \\
& \\
& R=\left\{s \rightarrow s_{1} \mid s_{2}\right\} \cup R \cup R_{2}
\end{aligned}
$$

BUT CFL's are not closed under:

- general intersection
( $\exists$ CFL') $L_{1}$ and $L_{2}$, but $L=L_{1} \cap L_{2}$ is $\operatorname{NOt} C F L$ )
- Complement

$$
\left(\exists L \subseteq \mathcal{E}^{*} \text { that is CFL, but } \bar{L} \notin F L\right)
$$

More Practice Problems on CFL's
(1.) Prove that $L=\left\{0^{n} \# 0^{2 n} H O^{3 n}(n \geqslant 0\}\right.$ is not a CFL

Let $p$ be the pumping length, and Let $w=\delta \# 0^{2 p} \# O^{3 p}$. We will write $w=a \neq b \neq c$. Let $w=u v x y z,|v x y| \leq p,|v y| \geqslant 1$
Case (i) if $v x y$ is a substring of $a$, then $w^{0}=u v^{0} x y^{0} z$
is not in $b$ since $w^{0}=a^{\prime} \# b \# c$ where $\left|a^{\prime}\right|<p$
care (ii) $v \times y$ is a substring of $b$. Then $w^{2}=u v^{2} \times y^{2} z$
since $w^{2}=a \not b^{\prime} \# C$, where $b^{\prime}$ has too many $O^{\prime}$ s
case (iii) vxy is a substring of $c$. Again $w^{2} \in L$
Case (iv) vxy is a substring of $a \forall b$. Then $w^{\circ}$ is not of proper form (either is messing a $H^{*}$, or has too few o's in a-part or b-part
case (v) vxy is a substing of $b H c$. Simian to (IV)
(z) $L=\left\{\left.0^{n} 1^{m}\right|^{n} 2^{m} \mid n, m \geqslant 0\right\}$.

IS L CFL?
we saw betore

$$
\begin{gathered}
L=\left.\left.O^{n}\right|^{m} O^{n}\right|^{m} \\
\text { is not } C+L
\end{gathered}
$$

$$
L=\left\{0^{n} 1^{n+m} 2^{m} \mid n, m \geq 0\right\}
$$

$(z) L=\left\{0^{n} 1^{m} 1^{n} Z^{m} \mid n, m \geqslant 0\right\}$.

Yes! L is a cPL $L=\left\{0^{n} 1^{m+n} 2^{m}\right\}$

Push ' $X$ ' when we see a $O$
Then pop of $O$ when we see a 1
If we reach bottom of stack ('\$') when reading a 0 , start pushing $y^{\prime}$ ' (Nondeterminusticilly guess when to pop $X^{\prime}$ 's or when to push $Y^{\prime} s$ )
When reading $Z$ 's, pop them with $\varphi$ symbols
If stack is empty (\$) when we reach end of string, accept
(z) $L=\left\{0^{n} 1^{m} 1^{n} Z^{m} \mid n, m \geqslant 0\right\}$.

Yes!. $L$ is a cEL

$$
L=\left\{0^{n} 1^{m+n} 2^{m}\right\}
$$


(3) IS $L=\left\{0^{n} 1^{m} Z^{n} 1^{m} \mid m, n \geq 0\right\}$ a $C F L$ ? . No!

Let $p$ be pumping length. Let $w=D^{p} 1^{p} 2^{p} 1^{p} . \quad w_{6} L$.
By $P L$, can wite $w=u v x y z, \quad\left|v_{x y}\right| \leqslant P,|v y| \geq 1$ and $\forall i \quad u v^{i} x y^{i} z \in L$
write $w=a b c b^{\prime}$

Case (1): vxy contained in a.
Then $w^{0}=U v^{0} x y^{0} z=u x z$ has too few a's so $w^{0} \neq b$ similarly if $v \times y$ contained in $b$, or contained in $c$, or in $b^{\prime}$
case (z) vxy contained in $a b$ (but not in a or in $b$ )

$$
w^{0}=u \times y \text {. If }|v| \geq 1 \text { then } w^{0}=0^{n^{1}} 1^{m^{\prime}} 2^{n} 0^{m} \quad n^{1}<n
$$

If $|y| \geqslant 1$ then $w^{0}=0^{n^{\prime}} 1^{m^{\prime}} 2^{n} 0^{m} \quad m^{\prime}<m$
similes argument if ray contained in be or in $c d$

Another argument for why $L=0^{n} 1^{m} 2^{n} 1^{m}$ is not a CFL:
Suppose that $L$ is a $C F L$ and let $y=(V, \Sigma, R S)$ be a CFg generating $L$.
Thew Let $g^{\prime}=\left(V_{b} \Sigma_{j} R^{\prime}, S\right)$ be obtained from $g$ by replacing every occurrence of ' 2 ' in the rules of $R$ by a ' $O$ ' to get the New rules $R$ !. Can prove (by induction on $|w|$ ) that this gives is a $1-+0^{-1}$, onto mapping from strings $W=0^{n} 1^{m} 2^{n} 1^{m}$ generated by $g$ to strings $\omega^{\prime}=0^{n}, 1^{m} 0^{n}, m$ generated by $g^{\prime}$.
$\therefore L\left(g^{\prime}\right)=\left\{0^{n} 1^{m} 0^{n} 1^{m} \mid n, m \geqslant 0\right\}$ is also a CFLL.
But this contradicts fact that we already proved that $L\left(g^{\prime}\right)$ is Not a CFL.
(4) Give a CF for:
$L_{1}=\left\{w H x \mid x=w^{2} y\right.$, for some $\left.y \in\{0,1\}^{x}\right\}$
$L_{0}=\left\{\omega \neq x \mid x=\omega^{R}\right\}$
$L_{2}=\left\{w_{\#} \times 1 \times\right.$ contains the sbbsting $\left.w^{2}\right\}$
$L_{1}$ contains $\underbrace{0011}_{w} \# \underbrace{\overbrace{y}^{100} \underbrace{1001}_{y}}_{w^{2}}$
$L_{2}$ contains $\underbrace{0011}_{w} \# \underbrace{w^{R}}_{\substack{\text { and } \\ \text { stan }} 00110} \underbrace{1100}_{\text {any strip }}$

$$
\begin{aligned}
& L_{0}=\left\{\omega H \omega^{R} \quad \mid \omega \in\{0,1)^{\star}\right\} \\
& A \rightarrow \text { OAO (AR } \\
& L_{1}=\left\{\omega \# \omega^{R} y \mid y \in\{0,1\}^{*}\right\} \\
& A \rightarrow O A O\left\{\left.|A|\right|_{\#} \sum_{\text {H } \left.\| \omega^{R}\right\}}\right. \\
& \text { generates } \\
& B \rightarrow \varepsilon|B O| B \mid \sigma \quad \text { generates } \\
& S \rightarrow A B \leftarrow \text { generator all strings in in }[0,1]^{*} \\
& \text { ־senerater all strings in } L_{\text {, }}
\end{aligned}
$$

$$
\begin{aligned}
& L_{1}=\left\{\omega \# \omega^{R} y \mid y \in\{0,1\}^{*}\right\} \\
& A \rightarrow O A O||A|| \# \\
& B \rightarrow \varepsilon|B O| B \mid \\
& S \rightarrow A B \\
& L_{2}=\left\{\omega \# y^{\prime} \omega^{R} y \mid y, y^{\prime} \in\{0,1\}^{\pi}\right\} \\
& A^{\prime} \rightarrow O A O||A l| \# B \\
& B \rightarrow \varepsilon|B O| B \mid \\
& S \rightarrow A^{\prime} B
\end{aligned}
$$

(5) Give a PDA for:
$L=\left\{w H x \mid w^{R}\right.$ is a substring of $\left.x\right\}$
(6) Describe the tanguage generated by $g$, in Englist.


$$
u \rightarrow o u o 0 \mid \#] \leftarrow \begin{aligned}
& \text { gererates } \\
& \left\{0^{n} \# \sigma^{2 n} \mid n \geqslant 0\right\}
\end{aligned}
$$

$S$ gearates the language $L=L_{1} \cup L_{2}$

$$
\begin{aligned}
& L_{1}=\left\{1^{3 m} \# 1^{m} 1^{3 n} \# 1^{n} \mid n, m \geqslant 0\right\} \ll{ }_{2}^{\text {gener }} \text { b/ed } \\
& L_{2}=\left\{0^{n} \# 0^{2 n} \mid n \geqslant 0\right\} \leftarrow \text { strings generated } \\
& \text { by } u
\end{aligned}
$$

