Next (Mon: Equivalence Between PDA and CFGs Week (Wed: Review for Test 1

.

Pumping Lemma for Context Free Languages Lemma Let L be a CFL, L= 2* Then there exists a number pro such that for any string well, INIZP, Estrings U,V,XY,Z EZX such that: () W=UVX1/Z and ① Ivxy1 ≤p and [vy1,≥1 and ② For every i=0, W'= uV'Xy'Z is also in L.

Example 1 We will show
$$L = [a^{0}b^{1}c^{2}|n \ge 0]$$
 is not a CEL.
Let $w = a^{2p}b^{2p}c^{2p}$, where p is from the pumping lemma
then By pumping Lemma $W = Uv \times yz$, $|vxy| < p$, $|vy| \ge 1$
Case 1: V and y contain only a's. Then $uv^{2x}y^{2z}$ mill
while two many a's
Case 2: V and y contain only b's or only c's
Same arg as Case 1
Case 3 V and y together contain both a's and b's.
Then $uv^{2}xy^{2z}$ will contain too few c's.
Similar is V and y together contain both a's r c's
Similar is V and y together contain both of s r c's
Three are no other cases since $|vxy| < p$ so
 vxy can't contain all three symbols a, b, c

Example 4
$$L = \{w \mid w = s.s, s \in \{0,1\}^*\}$$

(1st fry.) $w = 0^{P} 1, 0^{P} 1, e L$.
suppose $w = 000 - 01 000 - 01$
 $u = v \times y = 2$
then $w^{i} \in L$ for all i , so this choice of w
workt work to prove L not CFL

-

(3) (FL's closed under concatenation

For LUL Proof for PDA (closed under union) essentially same as proof Reg Lang's closed under union PDA for Ly M 6 M PDA for L

Q: Suppose L₁ is generated by CFG
$$g_1 = (V_1, \mathcal{Z}, \mathcal{R}_1, \mathcal{S}_1)$$

L₂ " $g_2 = (V_2, \mathcal{Z}, \mathcal{R}_2, \mathcal{S}_2)$

How de ve
Construct a
$$CFg, g, for LuLz?$$

 $g = (V, Z, R, S)$

$$V = V_{1} \cup V_{2} \cup \{s\}$$

$$R = \{s \rightarrow s_{1} \mid s_{2} \} \cup R \cup R_{2}$$

BUT CFL's are not closed under:

- Complement (] L = E* that is CFL, but [& CFL)

More Practice Problems on CFL's $L = 20^{n} \# 0^{2n} \# 0^{3n} (n \ge 0)^{2}$ is not a CFL (1) Prove that Let p be the pumping lensth, and Let W=8#0²#0³P. We will write W = a # b # c. Let W= UVxyz, IVxyl=p, Ivyl=1 Case (i) If vxy is a substring of a then W= uvxyoz is not in be since w = a' #b#c where la' |<p case (ii) vxy is a substring of b. Then w= uv2xy2 since w= atb the, where b' has too many o's case (iii) vy is a substring of c. Again where L Case (IV) VXY is a substring of attb. Then we is not of proper form leither is missing a the or has too few o's in a-part or b-part case(v) vxy is a substring of bHc. Similar to (1v)

(2)
$$L = 20^{n} [n 2^{m} | n m \ge 0]$$
. We saw before
IS $L = 0^{n} [m 0^{n} | m$
IS not CFL

$$L = 20^{n} 1^{n+m} 2^{m} | n, m \ge 0$$

(2)
$$L = 20^{n} l^{n} 2^{m} l n_{1} m \ge 0^{3}$$
.
Yes! Lix a CFL $L = 20^{n} 1^{m+n} 2^{m}$

(7)
$$L = 20^{n} l^{n} 2^{m} (n_{1}m \ge 0)^{2}$$
.
Yes! Lix a CFL $L = 20^{n} 1^{m+n} 2^{m}$

Anothen argument for why L= 0ⁿ I^m Zⁿ I^m is not a CFL;
suppose that L'is a CFL and let
$$g = (V, Z, RS)$$

be a CFg generating L.
Then Let $g' = (V, Z, R', S)$ be obtained from
g by replacing every occurrence of '2' in the
rules of R by a '0' to get the New rules R!.
(an prove (by induction on IWI) that this gives
Is a I-to-I, onto mapping from strings W=0ⁿ I^m zⁿ I^m
generated by g to strings W'=0ⁿ I^m generated by g.
. $L(g') = \{0^n I^m 0^n I^m | n, m \ge 0\}$ is also a CFL.
But this contradicts fact that we already proved that
 $L(g')$ is Not a CFL.

$$L_{1} = \{ w \# x \mid x = w^{p} y, \text{ for some } y \in \{q_{1}\}^{k} \}$$

$$L_{0} = \{ w \# x \mid x = w^{p} \}$$

$$L_{2} = \{ w \# x \mid x \text{ contains the substance } w^{p} \}$$

$$\frac{1}{4}$$
 contains $\frac{2011}{100}$ (100) $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$

$$L_{i} = \sum (w H w)^{R} | w \in \sum (j^{*})^{*}$$

$$A \rightarrow OAO (1A1) + +$$

$$L_{i} = \sum w \# w^{R} y | y \in \sum (j^{*})^{*}$$

$$A \rightarrow OAO (1A1) + 4$$

$$B \rightarrow \sum | BO|B1 + 4$$

$$Generates all strings in [9]]^{*}$$

$$L_{1} = \sum \omega \# w^{R}y | y \in \sum i$$

$$A \rightarrow OAO (|A| | \#)$$

$$B \rightarrow \varepsilon | BO|B|$$

$$S \rightarrow AB$$

$$L_{2} = \sum \omega \# y' w^{R} y | Y, y' \in \sum i$$

$$A' \Rightarrow OAO | |A| | \# B$$

$$B \rightarrow \varepsilon | DD|D|$$

,

· • •

$$S \rightarrow A'B$$

(5) give a PDA for:

•

-

 (ω)

S generates the language
$$L = L_{1}UL_{2}$$

 $L_{1} = \left\{ 1^{3m} \# 1^{m} \ 1^{3n} \# 1^{n} \ | \ n, m \ge 0 \right\} \leftarrow \frac{9e_{1}e_{1}}{b_{2}} + \frac{1}{2}e_{2}$
 $L_{2} = \left\{ 0^{7} \# 0^{2n} \ | \ n \ge 0 \right\} \leftarrow \frac{1}{b_{2}} + \frac{1}{b$