
Lecture
.

• HWZ out (due Monday Oct 16)

week {Today
: Cfg 's and Pumping Lemmon for CFL 's

This

Wednesday : Pumping
Lemma

,
Practice Problems

Next {MON : Equivalence Between PDA and Ctgs
week

Wed : Review for Test 1

10/23 {Mon : Test 1 (in class)

Examp4 g = (v :{ c- 3
,

E={9b,t,*
, 4) } , R ,

E }

R : c- → C- + E I E- * E / (E) / a 1 b

Derivation for a + b. * a c- L (g) :

E → Et E → c- * C- * C- → at C- * E → at b * E →atb *a

Examp4 g = (v :{ c- 3
,

E={9b
,
t ,*

, 4) } , R ,

E 3

R : c- → C- + E I E- * E / (E) / a 1 b

D-envatinttl-for.at#a-LCg) :
- C-

/ I\

E t C-

C- → Et E → c- * C- * C- → at C- * E → at b * E → atb*a 1 IN
a E * E

I t
b a

→
Derivation
tree

Examp4 g = (v :{ c- 3
,

E={9b,t,*
, 4) } , R ,

E }

R : c- → C- + E I C- * E / (E) / a lb

C-
/ 1)

Derivation #1 for atbta • E t C-
-

"

1 IN
C- → Et E → c- * C- * c- -5 at C- * E → at C-* a → atb * a

a E * E

I t
b a

.

Derivation A- 2 for atb×a
E

C- → C- * C- → C- * a-7 Et C- ☒ a→ at C- * a → atb* a / /\
C- * c-

111
E t E ta
l l
a

.

b

D_efn . A Leftmost derivation is a derivation where at each

step ,

we replace the leftmost variable

=P Derivations A1 and ¥2 Were Not Leftmost .

The corresponding Leftmost derivations are :

C-
Derivation €1 (c- → c- t.IE#E/.E)lalb)

/n-

E t C-

E → Et E → at E → at C- * c- → at b&E → at b-a p IN
a E * E

corresponding Leftmost : 1 f
b a

C- → Et E → c- * C- * c- → at C- * E → at C-☒ a → at b * a

claim there

a derive

-

D_efn . A leftmost derivation is a derivation where at each

step ,

we replace the leftmost variable

Derivation
E

C- → C- ☒ C- → C- * a-7 Et C- ☒ a→ at E * a → atb* a / /\
C- * c-

111
fÉdñgftm_t:

I
E t E a

1 I
C- → c-☒ C- → C- + c- * C- → at C- * c- → atb -C- → atbxa

a
.

b

Claim there is a 1- (correspondence between

a derivation tree and a leftmost derivation

Ambiguous vs unambiguous grammars

Deff A Cfg g is ambiguous if there exists some

we Lcg) such that w has more than one different

derivation trees E- more than one Leftmost derivation)

×a#4 is ambiguous since we just saw that

w ⇒ atbta has 2 different derivation trees

Ambiguous vs unambiguous grammars

Deff A Cfg g is ambiguous if there exists some

we Lcg) such that w has more than one different

derivation trees E- more than one Leftmost derivation)

[×#4g: c- → Et El E- * E I (E) f a lb is ambiguous
.

since W ⇒ atbta has 2 different derivation trees

Define : g
'

: E → c- f- F / F

F → f- * gig

g → (E) Ialb

claim g
'
is umwambiguoun , and L (g) =L (g)

Ambiguous vs unambiguous grammars

Deff A Cfg g is ambiguous if there exists some

we Lcg) such that w has more than one different

derivation trees E- more than one Leftmost derivation)
r

Defn_ A context free Language L is inherently ambiguous

if every Cfg
that generates L is ambiguous .

Ambiguous vs Unambiguous grammars
r

Defy A context free Language L is inherently ambiguous

if every Cfg
that generates L is ambiguous . .

Exempts L = { oibncmdm In ,m=o} u { anbmcndm In ,m=o }
is inherently ambiguous

ckliÑ1_ L is a CFL (prove as an exercise)

claiming Cidea) : show that any w of the form

anbncndn
,
n > 2 will always nail at least 2

different derivation trees

-

Context - Free Languages & PushDown Automata

Now we will define a larger class of languages that inciud.es
all regular Languages plus New ones .

✓ ① we will first define CFL's to be those languages accepted
by PUSHDOWN AUTOMATA (PDA)

✓② then we give an alternative characterization of cF↳

Language/generation Model : context Free grammars Ccfgs)

will
→② We will prove these 2 characterizations are equivalent :

prove later
PUSHDOWN AUTOMATA CPDA) = context Free grammars (c.Fgs)
Iif ¥ÉaÉodeI

③ PLmpiÉnÉEI : used to prove that
→ some languages are Not Context Free LanguagesNext

Pumping Lemond for CF Ls

we will describe a property of any CFL ,
similar to how we

exploited the finite state property for regular languages .

However
,
for 4-Ls it is a bit easier to extract this property
from the contat-F-re-grammar.IS , rice Languages are

context Free ⇐ they hare a Cig ⇒ they
have a FAA

,
it is

fine to work in either model .)

Recall for DF As : every DFA
M has a finite number of states :

- -

Let it be a K - state DFA . Then for every west , if
1W / 3k

,
M on W

will Loop . Therefore we can write w=xyz, 141=1 , Kyle K

such that for all 0>-0 w
'
= xyiz will be accepted by M if and

only if W is accepted by M .

For CFG's we will exploit a similar property :

any Cig has a finite nu_mber of rules .

Let g-- (V, E ,

R
,
S) be a Cig , 14

= K
.

Then for any west that
-

is generated by g , if lwl
> K

then every derivation
of W will repeat some variable .

Pumping Lemma for Context Free Languages

Lemmy Let L be a CFL
,
LEE

then there exists a number p7o such that for any

string WEL , 1W /=p ,
3- strings u,v, 44,7 C- {

*
such that :

⑧ w = uvixyz and

① lvxyl =p and Ivy 1>-1 and
I

② For every i
>o

,

w
'

= Uvixyiz is also in L
.

-

pumping Lemma for regular Languages
: Fp . .

. . /w/ =p

can write w= ✗ y 2- , lxyl =p, ly / 31

such that ti we L iff Wi = ✗yiz EL

Pumping Lemma for CFL 's Proof

Claim Let g-
- W

,
E
,

R
,
s) be a Cig with Wl=K ,

and let

b be the Max . length of any string he v8)* in a rule .

'

Then for any string w that is generated by G ;
it 1M¥ .b ,

then any
derivation of w must repeat

a variable
.\

we will call this
troof (see book)

value
"

p
"

the pumping tenth

s → Tgs 1 FREE b-
y

R→ aba

PL : Fp > o Vw c- E*
,

WEL
,
if lwl =p then can write w =

uvxyz
,

-

lvxyl =p , Ivy / 31 such that Yi > O
Wi = Uvixyiz EL .

ProfofPL_:
Let L be a CEL and Let g be a d- § generating L ,
where # variables ing is K and b Imax length of strings in rules .

Let
p# 61-+2 , and Let

WEL
,
IWI ? P .

By ciaiin , the
derivation tree of w must repeat a variable .

s _¥u Rz

derivation → R # v Ry¥:*tree for W R ✗

R repeated
variable Derivation of W :

w= III
s uRz⇒*uvRyZ

⇒ ur ✗ y 2-

PL : Fp > o Vw c- E*
,

WEL
,
if lwl =p then can write w =

uvxyz
,

-

I vxyl =p , Ivy / 31 such that Yi > O
Wi = Uvixyiz EL .

=L and Let g be a CFL generating L ,
where # variables ing is K and b Imax length of strings in rules .

Let
p 61-+2

,
and Let WEL

,
IWI ? P .

By claim , the
derivation tree of w must repeat a variable , say R .

Then WZ = ufxyZz also has a derivation tree . (and similarly for
any Wi -- uvixyiz)

s s ¥-2 u R z

s ii. Rz
R # v Ry

-

⇒ um , ,";y R # ✗ ⇒
uvvryyz
uvvxyy 't'^ =

w= III
w? IFTIFF -2T

CIAMPI : Let g= (V
,
S
,

R
,
S)

. V={§A,B,C } 2=90,13

S → 11 COO

C. → BAB µ 11
S S

B → O
o o

a- → c- ☒ ÷Y¥
• • • In
=/

W= I 10 11 00 oo→h-* B A B
B A B

a-TITI .

C ? § a B

* ÷ 1 .

B A BOY

jwc.BWH-uvxy-zalso.nl/g)#*
unity✗

Example1_ We will show L= lamb
"

il n > 0] is not a CEL
.

Let w = a
" b" EP

,

where p is from
the pumping lemma

then By pumping lemma
w=U✓×Y7

,
lvxy/ ⇐ p

,
Ivy / ± ,

ca
: V and y

contain only a 's .
Then uihy.z.mil

contain too many a 's

case 2 : v and y contain only
b's or only C's

.

Same arg as case 1

CASI V and y
together contain

both a's and bls
.

then uvzxyzz vii.
contain too few c's .

Similar if u and y
together contain

chis rds

there are no other cases since lvxyl < p so

vxy can't contain
all three symbols a. b , c

/

Case 3 :

↳a) vxy
of form aoib b*

examples : w = aaa abb be

a-
w- w !÷
v x y

aaa abbbb

cc÷= YET

D) vxy if form bb*cc*

*
since lvxyf =p , irxy cant

contain all 3 symbols a, b, g

Exampled L
-({ rots I rise { 0,1 }* and r

-

is a sub string Is }

Let p
be pumping length ;

let we OPIP tf oPzP c- L
,

then W = Ulvxyz , lvxyl Ep , Ivy /
31 0-÷É0-

Caset ✓ contains # .

Then VVZ -_uitxyz has 2--11's so ☒ 2

Casey y
' ' # .

Same argument as Casey

Casey it contains #
. then W°=UV°×y°t

has fewer

symbols after the
than before so with

Cassie 2- contains # then Ñ=uixy't has more than zp

symbols before
" ¥

" and zp after
"

#
' so ☒ (

caste X contains #

case 15A) : ✓ =\ either
w=oPÉ IFJ § # OK OF

"

/
P

- ←
--

U V × YZ

then W' = Uifxyhz has 1st block of Ids of length >p
but last block of 64 of length Lp

Case 3 : W = OP SP # OP y P

'U contains
'¥

'

symbol

so W = OPIPH-oi-OP-iw-iyp-s.ie
vxy
I

w• oPyP #
-

le the zp

Case 4 : 2- contains
'# I

* OF # OP y Pw =

a--7vxy
or

Oi OP-i.io"zP # OP g Pw =

a- *7-

Exampled L
-({ rlt-sfr.se { 0,1 }* and r

-

is a sub string Is }

Let p
be pumping length ;

let we OPIP tf oPzP c- L
.

then W = Ulvxyz , lvxyl Ep , Ivy /
←

tease✓ contains # .

Then VVZ __ uihxyz has 2--11's so ☒ 2

Casey y
' ' # .

Same argument as Casey

Casey it contains #
. then W°=UV°×y°t

has fewer

symbols after the
than before so woah

Casey 2- contains # then Ñ=ui×y't has more than zp

symbols before
" 1€

" and zp after
"

#
' so ☒ (

caste X contains #

case 15A : ✓ =\ E

Casecsb) : ✓=E .

then y -4C .

So w°=uv°xy° -2 has more

symbols to left of
'

than to right

