Lecture 10

- HW2 out (due Monday Oct 16)

This
Week $\left\{\begin{array}{l}\text { Today: CF's and Pumping Lemma for CFL's } \\ \text { Wednesday: Pumping Lemma, Practice Problems }\end{array}\right.$
Next $\left\{\begin{array}{l}\text { MON: Equivalence Between PDA and CFys } \\ \text { Week } \\ \text { Wed: Review for Test } 1\end{array}\right.$
10/23 $\{$ MON: Test 1 (in class)

Example $4 \quad g=(V=\{E\}, \quad \varepsilon=\{a, b,+, *, l)\}, R, E$,

$$
R: \quad E \rightarrow E+E|E \times E|(E)|a| b
$$

Derivation for $a+b * a \in \mathscr{L}(g)$:

$$
E \rightarrow E+E \rightarrow E+E * E \rightarrow a+E * E \rightarrow a+b * E \rightarrow a+b * a
$$

Example $4 \quad g=(V=\{E\}, \quad \Sigma=\{a, b,+, *, c)\}, R, E$,

$$
R: E \rightarrow E+E|E \times E|(E)|a| b
$$

Derivation \#1 for $a+b * a \in \mathscr{L}(g):$

$$
E \rightarrow E+E \rightarrow E+E * E \rightarrow a+E * E \rightarrow a+b * E \rightarrow a+b * a
$$

Derivation tree

Example $4 \quad g=(V=\{E\}, \quad \varepsilon=\{a, b,+, *, l)\}, R, E$,

$$
R: \quad E \rightarrow E+E|E * E|(E)|a| b
$$

Dervation \#1 for $a+b \not a c$:

$$
E \rightarrow E+E \rightarrow E+E * E \rightarrow a+E * E \rightarrow a+E * a \rightarrow a+b * a
$$

Dervation $\# 2$ for $a+b * a$:

$$
E \rightarrow E * E \rightarrow E * a \rightarrow E+E * a \rightarrow a+E * a \rightarrow a+b * a
$$

Defn. A leftmost derivation is a derivation where at each step, we replace the leftmost variable
\Rightarrow Derivations \#1 and \#2 were Not Leftmost.
The corresponding Leftmost derivations are:

Derivation $\# 1 \quad(E \rightarrow E+E|E * E|(E)|a| b)$

$$
E \rightarrow E+E \rightarrow a+E \rightarrow a+E * E \rightarrow a+b * E \rightarrow a+b * a
$$

corresponding Leftmost:

$$
E \rightarrow E+E \rightarrow E+E * E \rightarrow a+E_{*} \in \in \rightarrow a+E * a \rightarrow a+b * a
$$

Defn. A leftmost derivation is a derivation where at each step, we replace the leftmost variable

Derivation \#2

$$
E \rightarrow E * E \rightarrow E * a \rightarrow E+E * a \rightarrow a+E * a \rightarrow a+b * a
$$

Corresponding Left most:

$$
E \rightarrow E * E \rightarrow E+E * E \rightarrow a+E * E \rightarrow a+b * E \rightarrow a+b * a
$$

Claim there is a $1-($ correspondence between a derivation tree and a leftmost derivation

Ambiguous vs Un Ambiguous grammars

Defn A CFG g is ambiguous if there exists some $w \in \mathcal{L}(g)$ such that w has more than one different derivation trees (more than one Leftmost derivation)

Example 4 is ambiguous since we just saw that $W=a+b * a$ has 2 different derivation trees

Ambiguous vs Un Ambiguous grammars

Defn A CFG g is ambiguous if there exists some $w \in \mathcal{L}(g)$ such that w has more than one different derivation trees (\equiv more than one Leftmost derivation)

Example 4 g: $E \rightarrow E+E|E \times E|(E)|a| b$ is ambiguous since $W=a+b * a$ has 2 different derivation trees

Define: $g^{\prime}: E \rightarrow E+F / F$

$$
F \rightarrow F * g \mid g
$$

$$
g \rightarrow(E)|a| b
$$

claim g^{\prime} is unambiguous, and $f(g)=f\left(g^{\prime}\right)$

Ambiguous vs Un Ambiguous grammars

Defy A CFG g is ambiguous if there exists some $w \in \mathcal{L}(g)$ such that w has more than one different derivation trees (more than one Leftmost derivation)

Defn A context free Longuage L is inherently ambiguous if every CHg that generates L is ambiguous.

Ambiguous vs Un Ambiguous grammars
Defn A context free Longuage L is inherently ambiguous if every CHg that generates L is ambiguous.

Example $L=\left\{a^{n} b^{n} c^{m} d^{m} \mid n, m \geq 0\right\} \cup\left\{a^{n} b^{m} c^{n} d^{m} \mid n, m \geq 0\right\}$ is inherently ambiguous

Claim 1 is a CFL (Prove as an exercise)

Claim Z Cidea): show that any w of the form $a^{n} b^{n} c^{n} d^{n}, n \geq 2$ will always have at least 2 different derivation trees

Context - Free Languages \& PushDamn Automate
Now we will define a larger class of languages that includes all regular languages plus new ones.
\checkmark (1) We will first define CFL's to be those Languages accepted by PUSHDOWN AVTOMATA (PDA)
(2) Then we give an alternative characterization of CFLS Language l generation Model: Context Free grammars (CFgs)
will \rightarrow (aa) We will prove these 2 characterizations are equivalent: prove later

$$
\underbrace{\text { PUSHDOWN AUTOMATA (PDA) }}_{\text {Machine Model }} \equiv \underbrace{\text { Context Free grammars (CFgs) }}_{\text {Language (Generation Model }}
$$

(3) Pumping Lemma (for CFL's): used to prove that some languages are not context free Languages

Pumping Lemma for CFLS

We will describe a property of any CFL, similar to how we exploited the finite state property for regular languages.

Howeser, for CFLS it is a bit easier to extract this property from the context-Free-grammar. (Since Languages are context Free \Leftrightarrow they have a CFG \Leftrightarrow they have a PDA, it is fine to work in either model.)

Recall for DIAs: every DFA M has a finite number of states:
Let M be a k-state $D F A$. Then for every $w \in \Sigma^{+}$, if $|w| \geq k, M$ on w will loop. Therefore we can write $w=x y z,|y| \geq 1,|x y| \leq k$ such that for all $i \geqslant 0 w^{\prime}=x y^{\prime} z$ will be accepted by M if and only if w is accepted by M.

For CFG's we will exploit u similar property: any Cig has a finite number of rules.

Let $g=(V, \Sigma, R, s)$ be a $c F g,|V|=K$.
Then for any $w \in \mathcal{E}^{*}$ that is generated by g, if $|w|>k$ then every derivation of w will repeat some variable.

Pumping Lemma for Context Free Languages
Lemma Let L be a CFL, $L \subseteq \sum^{*}$
Then there exists a number $p \geqslant 0$ such that for any string $w \in L,|w| \geqslant p, \exists$ strings $u, v, x, y, z \in \sum^{*}$ such that:
(0) $w=u v x y z$ and
(1) $|v x y| \leqslant p$ and $|v y| \geq 1$ and
(2) For every $i \geq 0, w^{i}=u v^{i} x y^{i} z$ is also in L.

Pumping Lemma for regular Languages: $\exists p \ldots|w| \geqslant p$ can wite $w=x y z,|x y| \leqslant p,|y| \geqslant 1$ such that $\forall i \quad w \in L$ if $w^{i}=x y^{i} z \in L$

Pumping Lemma for CFL's Prot
Claim Let $g=(V, \varepsilon, R, s)$ be a CFG with $|V|=K$, and let b be the max. length of any string $U \in(V \cup \Sigma)^{\pi}$ in a rule.
Then for any string w that is generated by \mathcal{G}; if $|w| \geqslant \sqrt[b^{k+2}]{ }$, then any derivation of w must repeat a variable.

Proof (see book)
we will call this value " P " the pumping length

$$
S \rightarrow \widetilde{a s b} / \sqrt{a R b b} \quad b=4
$$

$R \rightarrow a b a$

PL: $\exists p \geq 0 \quad \forall w \in \Sigma^{*}, w \in L$, if $|w| \geq p$ then can write $w=u v x y z$, $|v x y| \leq p, \quad|v y|^{\prime} \geq 1$ such that $\forall i \geqslant 0 \quad w^{i}=u v^{i} x y^{i} z \in L$.
Proof of PL:
Let L be a $C F L$ and Let G be a CFG generating L, where $\#$ variables in g is K and $b=\max$ length of strings in rules. Let $p=b^{k+2}$, and Let $w \in L,|w| \geqslant p$.
By claim, the derwation the of w must repeat a variable.
derivation \longrightarrow
tree for w
$R=$ repeated variable

$$
\begin{aligned}
& S \stackrel{*}{\Rightarrow} u R z \\
& R \stackrel{*}{\Rightarrow} v R y \\
& R \stackrel{*}{\Rightarrow} x
\end{aligned}
$$

Derivation of W :

$$
\begin{aligned}
S \stackrel{*}{\Rightarrow} u R z & \stackrel{*}{\Rightarrow} u v R y z \\
& \Rightarrow u v x y z
\end{aligned}
$$

PL: $\exists p \geq 0 \quad \forall w \in \varepsilon^{*}, w \in L$, if $|w| \geqslant p$ then can write $w=u v x y z$, $|v x y| \leq p, \quad|v y|^{\prime} \geqslant 1$ such that $\forall i \geqslant 0 \quad w^{i}=u v^{i} x y^{i} z \in L$.
Proof of $P L$
Let L be a CFL and Let G be a CFL generating L, where $\#$ variables in g is K and $b=\max$ length of strings in rules.
Let $p=b^{k+2}$, and Let $w \in L,|w| \geqslant p$.
By claim, the derivation trike of w must repeat a variable, say R.
Then $w^{2}=u v^{2} \times y^{2} z$ also has a derivation tree. (and similarly for any $\left.w^{i}=u v^{i} x y^{i} z\right)$

Example: Let $G=(V, \Sigma, R, S) . V=\{S, A, B, C\} \quad \Sigma=\{0, B$

Example 1 we will show $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is wot a $C E L$.
Let $w=a^{2 p} b^{2 p} c^{2 p}$, where p is from the pumping emma
then By pumping Lemma $w=u v x y z,|\sim x y|<p, \quad|v y| \geq 1$
Case 1: V and y contain only a's. Then $u v^{2} x y^{2} z \mathrm{mll}$ contuir too many a's
Case 2: v and 4 contain ont b 's or $m l^{c}$ c's.
same arg as case 1
Case 3 and 1 together contain both a's and b 's. then $u V^{2} x y^{2 z}$ will contain too few $C^{\prime} s$. similar it v and y together contain bi's a c's

There are no other cases since $\mid v x y l<p$ so vxy cart contain all three symbols a, b, c

Case 3:
(Ba) very of from $a a^{*} b b^{*}$
examples: $w=\underbrace{a a a}_{u} \underbrace{a}_{v} \underbrace{b b b}_{x} \underbrace{\varepsilon}_{y} \underbrace{b c c c c}_{z}$
$\underbrace{\text { aaa }}_{u} \underbrace{a b b b b}_{v=y} \underbrace{c c c c}_{z}$
(3b) $v x y$ if form $b b^{6} c c^{8}$

* Since $(v x y l \leq p$, Vxy cant contain all 3 symbols a b,

Example 2 $L=\left\{r \# s\left\{r_{1} s \in\{0,1\}^{*}\right.\right.$ and r is a substring $\left.G^{\prime} s\right\}$
Let p be purpinglength; Let $w=O^{P} 1^{P} \# 0^{P} 1^{P} \in \mathcal{L}$.

then $w=u v x y z,|v x y| \leq p, \quad|v y| \geq 1$
Case $1 \quad v$ contains \#. Then $w^{2}=u v^{2} x y^{2} z$ has $2 A^{\prime} s$ so $\notin L$
Case 2 " $\#$ " Same argument as Case 1
case $3 u$ contains \#. then $w^{\circ}=4 v^{\circ} \times y^{\circ} z$ has fewer
symbols after the \# than before so $w^{\circ} \# L$
Case 4 contains \# then $w^{2}=u v^{2} x y^{2} z$ has more than $2 p$ symbols beta "甘" and 2ρ after "甘" so $\& L$

Lase $5 \times$ contains \neq
Case (Fa): $v \neq \varepsilon$ ithen $w=\frac{0^{p} 1^{j}}{u} \underbrace{1^{p-j}}_{v} \underbrace{1^{j} \not \|^{k}}_{x} \underbrace{\left.0^{p-k}\right|^{p}}_{y z}$
Then $w^{2}=u v^{2} x y^{2} z$ has st block of η^{\prime} 's of length $>p$ but last block of is of length $<p$

Case 3:

$$
w=0^{p} s^{p} \# 0^{p} s^{p}
$$

U contains ' $\#$ ' symbol
so $w=\underbrace{O^{p} 1^{p} \# 0^{i}}_{u} \underbrace{0^{p i} 1^{j}}_{v x y} \underbrace{1^{p-j}}_{z}$

$$
w^{o} \quad O^{p} s^{p} \# \underbrace{}_{l e j t h}
$$

Case 4: z coniains '\#1

$$
w=\underbrace{0}_{u} \underbrace{0^{p-i}}_{v x y} \underbrace{p j}_{z} \underbrace{i}_{z} 0^{p}]^{p}
$$

or

$$
w=\underbrace{O^{j}}_{u} \underbrace{0^{p i-j}}_{\text {vxy }} \underbrace{O^{i^{i}} 子^{p} A O^{p} J^{p}}_{z}
$$

Example 2 $L=\left\{r \# s\left\{r_{1} s \in\{0,1\}^{*}\right.\right.$ and r is a substring $\left.G^{*}\right\}$
Let p be purpinglength; Let $\left.w=O^{p} 1^{p} \# 0^{p}\right]^{p} \in \mathcal{L}$.
then $w=u v x y z, \quad|v x y| \leq p, \quad|v y| \leq 1$
Case $1 v$ contains \#. Then $w^{2}=u v^{2} x y^{2} b$ has $2 \notin$'s so $\& 2$
case 2 " \#. Same argument as case 1
Case $3 u$ contains \#- then $w^{\circ}=4 v^{\circ} x y^{\circ} z$ has fewer
symbols after the \# than before so $w^{\circ} \# L$
case φz contains \# then $w^{2}=u v^{2} x y^{2} z$ has more than $2 p$ symbols bettor "甘" and 2ρ after "甘" so $\forall L$

Case $5 \times$ contains \#
case (Fa): $V \neq \varepsilon$
Case $\left(S_{b}\right): V=\varepsilon$. then $y \neq \varepsilon$. So $w^{\circ}=u v^{\circ} x y^{0} z$ has more, syminds to rect of $\&$ than to right

