Lecture 10

· HWZ out (due Monday Oct 16)

-

Example 4
$$9 = (V = \{E\}, E = \{a_1b, +, *, (,)\}, R, E\}$$

 $R : E \rightarrow E + E | E \times E | (E) | a | b$

Derivation for $a + b * a \in \mathcal{Z}(g)$:

 $E \rightarrow E + E \rightarrow E + E = E \rightarrow a + E + E \rightarrow a + b + E \rightarrow a + b + a$

Example 4
$$g = (V = \{E\}, E = \{a, b, +, *, (,)\}, R, E\}$$

 $R : E \rightarrow E + E | E \times E | (E) | a | b$
Derivation #1 for $a + b \times a \in \mathcal{I}(g)$:
 $E \rightarrow E + E \rightarrow E + E + E \rightarrow a + b \times E \rightarrow a + b \times E \rightarrow a + b \times a$
 $a = \begin{bmatrix} F & F \\ F & F \\$

Example 4
$$g = (V = \{E\}, E = \{a, b, +, *, (,)\}, R, E\}$$

 $R : E \rightarrow E + E | E \times E | (E) | a | b$
Derivation #1 for $a + b \times a$:
 $E \rightarrow E + E = \rightarrow E + E + E \Rightarrow a + E \times E \Rightarrow a + E \times a \Rightarrow a + b \times a$
 $E \rightarrow E + E = \rightarrow E + E + E \Rightarrow a + E \times E \Rightarrow a + E \times a \Rightarrow a + b \times a$
 $a = E + E \Rightarrow E + E + E \Rightarrow a + E \times E \Rightarrow a + E \times a \Rightarrow a + b \times a$

. Derivation #2 for at b*a:

 $E \rightarrow E * E \rightarrow E * a \rightarrow E + E * a \rightarrow a + E * a \rightarrow a + b * a$

Defn. A leftmost derivation is a derivation where at each step, we replace the leftmost variable

The corresponding Leftmost derivations are;

Derivation #1
$$(E \rightarrow E + E | (E) | a | b)$$

 $E \rightarrow E + E \rightarrow a + E \rightarrow a + E + E \rightarrow a + b + E \rightarrow a + b + E \rightarrow a + b + a$
Corresponding Leftmost:
 $E \rightarrow E + E \rightarrow E + E + E \rightarrow a + E + E \rightarrow a + E + a + b + a$
 $E \rightarrow E + E \rightarrow E + E + E + E \rightarrow a + E + E \rightarrow a + b + a$

Defn. A leftmost derivation is a derivation where at each step, we replace the leftmost variable

a derivation tree and a leftmost derivation

Ambiguous vs Un Ambiguous grammars

Defn A CFG G is ambiguous if there exists some we I(g) such that w has more than one different derivation trees (= more than one Leftmost derivation)

Example 4 is ambiguous since we just saw that W= atb*a has 2 different derivation trees Ambiguous vs Un Ambiguous grammars

Defn A CFG G is ambiguous if there exists some we I(g) such that w has more than one different derivation trees (= more than one Leftmost derivation)

Example 4 q: E->E+E | E × E | (E) | a | b is ombiguous since W = atb*a has 2 different derivation trees

claim g'is unambiguous, and Z(g) = R(g')

Ambiguous vs Un Ambiguous grammars

Defn A CFG g is ambiguous if there exists some we I(g) such that w has more than one different derivation trees (= more than one Leftmost derivation)

٢

Pumping lemma for CFLs

we will describe a property of any CFL, similar to how we exploited the <u>finite state</u> property for regular languages.

However, for CFLS it is a bit easier to extract this property from the context-Free-grammar. (Since Languages are context Free () they have a CFG () they have a PDA, it is fine to work in either model.) Recall for DFAs: every DFA M has a finite number of states: Let M be a k-state DFA. Then for every $W \in \Xi^*$, if $|W| \ge K$, M on W Will Loop. Therefore we can write W = XYZ, $|Y| \ge 1$, $|XY| \le K$ such that for all $i \ge 0$ w' $\ge XY^*Z$ will be accepted by M if and only if W is accepted by M.

For CFG's we will exploit a similar property:
any CFG has a finite number of rules.
Let
$$g=(v, z, R, s)$$
 be a CFG, $|v|=K$.
Then for any we z* that is generated by g, if $|w|>k$
then every derivation of w will repeat some variable.

Pumping Lemma for Context Free Languages Lemma Let L be a CFL, L= 2* Then there exists a number pro such that for any string well, INIZP, Estrings U,V,XY,Z EZX such that: () W=UVX1/Z and ① Ivxyl ≤p and [vyl ≥1 and ② For every i=0, W'= uV'Xy'Z is also in L.

Claim Let
$$g = (V, E, P, s)$$
 be a CFG with $|V|=k$, and let
b be the max. length of any string $k \in (V \cup E)^{\circ}$ in a rule.
Then for any string w that is generated by G ,
if $|W| = b^{K+2}$, then any derivation of w must repeat
a variable.
Proof (see book) we will call this
value "p" the pumping length

PL:
$$\exists p \ge 0 \quad \forall w \in \mathbb{Z}^{*}, w \in L, \text{ if } |w| \ge p \text{ then can write } w = u \vee x \vee z}, \\ |v \times y| \le p, |v \times y| \ge | \quad s \lor ch \text{ that } \forall i \ge 0 \quad w^{i} = u \vee x \vee y \ge eL.$$

Proof of PL
Let L be a CFL and Let g be a CFL generating L,
where H variables in g is k and b = max length of strings in rules.
Let $p = L^{k+2}$, and Let $w \in L$, $|w| \ge p$.
By claim, the derivation tree of w must repeat a variable, say R.
Then $w^{2} = u \vee^{2} x \vee^{2} z$ also has a derivation tree. (and similarly for
any $w^{i} = u \vee^{i} x \vee^{i} z$)
 $\begin{cases} s & s \ge u R z \\ R \stackrel{i}{\Longrightarrow} v R \\ R \stackrel{i}{\Longrightarrow} x \\ R \stackrel{i}{\Longrightarrow} u \vee v R \vee^{2} z \\ w = u \vee x \vee^{2} z \\ W = u \vee x \vee^{2} z \end{cases}$
 $w^{2} = u \vee v \times \gamma \vee^{2} z$

Example: Let
$$g = (V, \leq, R, s)$$
. $V = \sum A_B c_1^2 \leq \sum a_{1}^2$
 $S \rightarrow 11 cool
 $C \rightarrow BAB \downarrow 11$
 $B \rightarrow 0$
 $A \rightarrow CB$
 $W = 11 0 11 00 00$
 $U = V \times Y = 2$
 $V = 2 also m L(g)$
 $V = 2 \sum A_B c_1^2 \leq \sum a_{1}^2 c_{1}^2$
 $V = 2 \sum A_B c_{1}^2 \leq \sum a_{1}^2 c_{1}^2$
 $V = 2 \sum A_B c_{1}^2 \leq \sum a_{1}^2 c_{1}^2$
 $V = 2 \sum A_B c_{1}^2 \leq \sum a_{1}^2 c_{1}^2$
 $V = 2 \sum A_B c_{1}^2$$

.

Example 1 We will show
$$L = [a^{0}b^{1}c^{2}|n \ge 0]$$
 is not a CEL.
Let $w = a^{2p}b^{2p}c^{2p}$, where p is from the pumping lemma
then By pumping Lemma $W = Uv \times yz$, $|vxy| < p$, $|vy| \ge 1$
Case 1: V and y contain only a's. Then $uv^{2x}y^{2z}$ mill
while two many a's
Case 2: V and y contain only b's or only c's
Same arg as Case 1
Case 3 V and y together contain both a's and b's.
Then $uv^{2}xy^{2z}$ will contain too few c's.
Similar is V and y together contain both a's r c's
Similar is V and y together contain both of s r c's
Three are no other cases since $|vxy| < p$ so
 vxy can't contain all three symbols a, b, c

×

.

Case 3:
$$W = O' 1' # O' 1^P$$

so
$$W = O^{P} 1^{P} # O^{C} O^{P} 1^{I} (1^{P})^{P}$$

 $W V \times Y = 2$
 $W O^{P} 1^{P} # (1^{P})^{P} (1^{P})^{P}$
 $Iege M < 2p$

Case y: Z contains '#1

01

 $W = \bigcup_{u \in V_{xy}}^{j} O'_{1} P + O'_{1} P$