## Welcome to coms 3261 (cs theory)!

Lecture recordings Office hour Links (calendar) gradescope: submit homeworks Discussion (edstern)

6. <u>Prerezs</u> Discrete math (graphs, directed, undirected) See chap O

7. Evoluation

- 4 homeworks 7<sup>do</sup> each (28<sup>do</sup>) 2 tests (in class) 36<sup>do</sup> each (72<sup>do</sup>) 10/23, 12/11
- \* Late homeworks Not accepted Submit to gradescope. Deadline midnight can submit early r resubmit unfil deudline

## Intro

This course is about how hard problems are "languages" are problems. For Now think of languages as problems.

We will characterise problems into some classes

Regular Languages /DFAs Context-free languages (PDAs computable/decidable languages /TMs Complexity Theory

## Challenges

Lots of proofs Abstract some concepts may not seem natural (at first) ie. Nondelerminism

Backgound Material

An alphabet 
$$\Sigma$$
 is a finite set of elements  
 $\sum_{i=1}^{n} \frac{1}{2} = \frac{1}{2}$ 

A string W over  $\mathcal{E}$  is a finite sequence of elements from  $\mathcal{E}$   $\mathcal{F}$  Examples  $(\mathcal{E} = \{0,1\}): W = \mathcal{E}$ W = 0011

A language 
$$\mathcal{J}$$
 over  $\mathcal{Z}$  is a set of strings over  $\mathcal{Z}$   
Examples  $\mathcal{J} = \phi$  (the empty language)  
finite  $\mathcal{J} = \{w \mid w \text{ has length } \leq 10\}$   
or infinite  $\mathcal{J} = \{w \mid w \text{ has an odd number of } 1's\}$   
 $\mathcal{J} = \{w \mid w \text{ has an odd number of } 1's\}$   
 $\mathcal{J} = \{w \mid w \text{ has any string over } \mathcal{E}\}$ 

$$W = 001110 \in \angle$$

$$W = (0101011 \in \angle$$

$$W = \varepsilon \qquad \& \angle$$

$$W = 1(10000 \& \angle$$

Z = {0,1}

5

Why are languages problems!  
Fix alphabet 
$$\Xi$$
 (i.e.  $\Xi = \Xi Q I \overline{Z}$ )

Problem associated with X: given we z\* as input, decide if we R Input: we z\* Output: (yes (accept) if we X (No ineject) if we R



$$E \times amples of Languages$$

$$L1 = \{ w \in \{0, 1\}^{*} \mid w \text{ has an even number of } 1^{*} \}$$

$$L2 = \{ w \in \{0, 1\}^{*} \mid w \text{ ends with } 0 \mid 1 \}$$

$$L3 = \{ w \in \{0, 1\}^{*} \mid w \text{ ends } u^{*} \cap 1^{*}, n \ge 1 \}$$

$$L4 = \{ w \in \{0, 1\}^{*} \mid w \text{ encodes a connected graph} \}$$

$$L5 = \{ w \in \{0, 1\}^{*} \mid w \text{ encodes a connected graph} \}$$

$$L6 = \{ w \in L0, 1\}^{*} \mid w \text{ encodes a program that runs fore ver } \}$$

$$Turing Decidable$$

Regular Languages and Finite Automatic

(over Z= {0,1}) Example of a DFA W= 01101 accepted N= 1100 rejected W= 1110  $S: \frac{q_{0}q_{1}q_{0}}{q_{1}q_{0}q_{1}}$  $\mathcal{M} = \left\{ \underbrace{\boldsymbol{z}} = \{ \boldsymbol{Q}_{1} \}, \underbrace{\boldsymbol{Q}} = \{ \boldsymbol{Q}_{0}, \boldsymbol{Q}_{1} \}, \underbrace{\boldsymbol{Q}}_{set of}, \underbrace{\boldsymbol{Q}}_{set o$ start state alphabet transition actory states states function



