Welcome to cons 3261 (cs Theory)!

Toniann (Toni) Pitassi

1. Course website: www.cs.columbia.edu/~toni/courses/cstheoryzoz3
2. Course works:

Lecture recordings
office hour links (calendar)
gradescope: submit homecoorks
Discussion (eastern)
3. Lectures MW 8:40-9:55

MW 10:10-11:25
4. of fice hours / Review) Sessions
see course Calendar
5. Book: Sipser Inti to Theory of Complexation $3^{\text {od }}$ edition (or any edition)
6. Prereqs

Discrete math (graphs, directed, undirected) See chap O
7. Evaluation

$$
\begin{gathered}
4 \text { homeworks } 7^{d_{0}} \text { each }\left(28^{d_{0}}\right) \\
2 \text { tests (in class) } 36^{d_{0}} \text { each }\left(72^{d_{0}}\right) \\
10 / 23,12 / 11
\end{gathered}
$$

* Late nomeworks not accepted Submit to gradescope. Deadline midnight can submit early r resubmit until deadline

8. Collaboration / Academic honesty

Dort search internet for solutions, related ε^{\prime} s
Dort copy from anyone /arg source
can collaborate with other students taking class at end of collaboration, erase unite board or paper. Dort take pics only keep ideas from discussion. write down solus by yourself Write Names of collaborators on HW

Intro

This course is ubout how hard problems are "Languages" are problems. For Now think of languages as problems.

We mil characterize problems into some classes
Regular Languages/DFAs
context-free languages /PDAs
computable/decidable kanguages/TMs
Complexity theory

Challenges

Lots of proofs
Abstract
some concepts may wot seem natural (at first) ie. Nondeterminism

Background Material
I. Not covered here but yore reed to know: (chap 0)

Boolean Logic, graphs, sets

II Alphabet, strings Words, Languages

An alphabet Σ is u finite set of elements
\Rightarrow Examples: $\Sigma=\{0,1\}$
Finite $\quad \Sigma=\{0,1,2, \ldots, 8,9\}$
A string $\frac{150 r}{w}$ over Σ is a finite sequence of elements from Σ
finite

$$
\text { Examples } \begin{aligned}
(\varepsilon=\{0,1\}): & w=\varepsilon \\
& w=0011
\end{aligned}
$$

A language \mathcal{L} over Σ is a set of strings over Σ

Examples	$\mathcal{L}=\phi \quad$ (the empty language)
or	$\mathcal{L}=\{w \mid w$ has length $\leq 10\}$
infinite	$\mathcal{L}=\{w \mid w$ has un odd number of 1 1's $\}$
	$\mathcal{L}=\varepsilon^{*}=\{w \mid w$ is any string over $\varepsilon\}$

$$
\begin{aligned}
\mathcal{J} & =\{w, w \text { has length } \leq 10\} \\
& =\{\varepsilon, 0,1,10,01,11,00,000,001,010, \ldots, 111
\end{aligned}
$$

$L=\left\{\omega \mid w\right.$ has an odd number of $\left.\left.s^{\prime}\right\rfloor\right\}$

$$
\begin{array}{ll}
w=001110 & \in L \\
w=10101011 & \in L \\
w=\varepsilon & \otimes L \\
w=1110000 & \otimes L
\end{array}
$$

$$
\begin{aligned}
\Sigma & =\{0,1\} \\
\Sigma^{*} & =\{\dot{\varepsilon}, 0,1, \infty, 01,10,11, \infty 00, \infty 1, \ldots, 111, \ldots\}
\end{aligned}
$$

String Notation
The length of a string $s \in \Sigma^{*},|s|$, is the number of characters in the string

The empty string, denoted by ε, is the string of length zero
The concatenation of strings s and t, is denoted by $s \cdot t$ or $s t$
Σ^{k} is the set of all strings over Σ of length k
\sum^{*} is the set of all strings over ε

$$
\Sigma^{2}=\{00,01,10,11\}
$$

A language L over Σ is a subset of Σ^{*}
smallest language: $L=\phi$
Largest language: $L=\Sigma^{*}$

Why are languages problems?
Fix alphabet Σ (ie. $\Sigma=\{0,1\}$)

Problem associated w ht x :
given $w \in \Sigma^{*}$ as input, decide if $w \in R$
Input: $w \in \varepsilon^{*}$
output: $\left\{\begin{array}{l}\text { yes (accept) if we } \\ \text { no (reject) if wed }\end{array}\right.$

Examples of Languages
$L 1=\left\{w \in\left\{0,13^{*} \mid w\right.\right.$ has an even number of $\left.1^{\prime} s\right\}$
$L 2=\left\{w \in\{0,1\}^{*} \mid w\right.$ ends with 011$\}$
example:
$L 3=\left\{w \in\{0,1\}^{*} \mid w=0^{n} 1^{n}, n \geqslant 1\right\}$

$$
\begin{aligned}
& w=1101011 \in L \\
& w=111110 \in L
\end{aligned}
$$

$L 4=\left\{w \in\{0,1,2\}^{+} \mid w=0^{n} 1^{n} 2^{n}, n \geq 1\right\}$
$L 5=\left\{w \in\{0,1\}^{*} \mid w\right.$ encodes a connected graph $\}$
$\angle 6=\left\{\omega \in[0,1]^{*} \mid w\right.$ encodes a program that runs forever $\}$

$$
\omega=00110011 A L
$$

Examples of Langrages

Regular Languages and Finite Automate
Example of a DFA (over $\Sigma=\{0,1\}$)

$$
\begin{array}{ll}
w & =01101 \text { accepted } \\
w & =1100 \text { rejected } \\
w & =1110
\end{array}
$$

$$
\delta: \begin{array}{l|ll}
& 1 & 0 \\
\hline q_{0} & q_{1} & q_{0} \\
q_{1} & q_{0} & q_{1}
\end{array}
$$

Example 2

$$
\begin{array}{ll}
L=\{\varepsilon\} & \rightarrow(20) \\
L=\phi & \rightarrow(\varepsilon), 0,1
\end{array}
$$

