
COMS 3261, Computer Science Theory (Fall 2023): Assignment 4 Solutions

Problems

1. (5 points) Prove that the class P is closed under complement.

Solution: The proof is analogous to the argument showing that the class of decidable
languages is closed under complement. Let L be a language in P , and let A be a TM
that decides L and runs in polynomial time. Then we can also decide the complement
of L in polynomial time by simulating A on an input w and if A accepts w then halt
and reject w and if A rejects w then halt and accept w.

2. (10 points) Let FACTOR be the function that takes as input a natural number x
in decimal notation, and outputs the prime factorization of x, also in decimal. For
example, if the input is 13, then the output would be 13, and if the input is 12, the
output would be 2,2,3. (You can output the prime factors in any order.) Prove that
if P = NP then there is a polynomial-time algorithm for FACTOR. Note that NP
is a class of languages (or decision problems), so factoring is not in NP . Therefore,
you should give an algorithm for FACTOR, assuming that every language in NP is
solvable in polynomial-time.

Solution: For this problem we will also assume that PRIME is in P since as discussed
in class it is known to be in P (and even if not, PRIME is in NP so under the
assumption P=NP we get that PRIME is in P).

Let EXISTS-PRIME-FACTOR be the language consisting of triples (x, y1, y2) such
that 1 < y1 < y2 < x and such that there exists a prime number z, y1 ≤ z ≤ y2,
such that z divides x. First it is easy to see that EXISTS-PRIME-FACTOR is in NP:
the verifier V on input ((x, y1, y2), z) checks whether (i) z is a prime in the interval
(y1, y2) and (ii) that z divides x, and if so then V accepts and otherwise V rejects.
Therefore assuming P = NP , EXISTS-PRIME-FACTOR is in P.

Let FIND-PRIME-FACTOR take as input x, and output either x if x is prime, or
it outputs a prime factor y < x of x. We first describe an algorithm to solve FIND-
PRIME-FACTOR using EXISTS-PRIME-FACTOR as a subroutine. FIND-PRIME-
FACTOR on input x: If PRIME(x) accepts (so x is prime), then halt and output
x. Otherwise, call EXISTS-PRIME-FACTOR(x, 2, x/2). If it accepts then we know
that there is a prime factor x′ in the interval (2, x/2). In this case recursively call
EXISTS-PRIME-FACTOR on the interval (2, x/4). Otherwise we know that there is a
prime factor factor in the interval (x/4, x/2) so we recursively call EXISTS-PRIME-
FACTOR on the interval (x/4, x/2). When the recursive calls finish, we will have
found some x′ that is a nontrivial prime factor of x.

The above algorithm runs in polynomial time assuming that EXISTS-PRIME-FACTOR
runs in polynomial time in log x. (Note that the length of the input is O(log x). This
is because each time we call EXISTS-PRIME-FACTOR, we are recursing on an in-
terval of that is half as big as the previous interval, so after log x iterations, we are
guaranteed to have found a prime factor.

Lastly we will show how to solve FACTOR given the above algorithm for FIND-
PRIME-FACTOR. On input x to FACTOR, we repeatedly call FIND-PRIME-FACTOR.

1



We start by calling it on x. If it returns x then x is prime so we are done. Otherwise, if
it returns a prime factor x′ < x, then we call FIND-PRIME-FACTOR on x/x′. Since
x′ ≥ 2, each time we call FIND-PRIME-FACTOR, it is called on a number that is
at most half of what it was in the previous call, and therefore we call FIND-PRIME-
FACTOR at most log x times. Since each call is polynomial time in log x, the total
runtime to solve FACTOR is polynomial in log x, (assuming that P = NP )

3. (10 points) State True or False for each question and give a one sentence justifcation
of your answer.

(a.) For any language L, if L is in NP , then the complement of L is also in NP .

Solution: If for every NP language L, its complement is also in NP then P is
equal to NP intersect coNP. This is currently unknown and we expect that the
answer is no. Therefore the statement is not known to be true or false but it is
likely False.

(b.) For any language L, if L is NP -complete, then the complement of L is NP -hard.

Solution: This is true. Let L be an NP-complete language. Then we will show
that if the complement of L is in P then P = NP . Assume that the complement
of L is in P . Then L itself is also in P since by problem 1 above. Then since L
is NP-complete this implies that if L is in P then every other language in NP is
also in P .

4. (12 points) A Boolean formula is in CNF form if it is the logical AND of a set of
clauses, where each clause is the OR of a set of literals, and each literal is a variable
or its negation. A CNF formula f over variables x1, . . . , xn is satisfiable if there exists
a Boolean assignment α ∈ {0, 1}n to the variables such that f(α) evaluates to true.

(a.) Is the following formula satisfiable? Prove your answer.

f = (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (¬x1 ∨ ¬x4) ∧ (x4)

Solution: This formula is satisfiable. A satisfying assignment is: α = 0111.

(b.) Suppose that you are given a Boolean formula f in CNF form over n Boolean
variables, where each clause contains at most 3 literals. Prove that f can be
converted into another CNF formula, g, such that: (i) g has exactly 3 distinct
literals per clause; (ii) the number of clauses in g is polynomial in n; and (iii)
g is satisfiable if and only if f is satisfiable. (Note that the variables of g can
include new variables in addition to the variables of f .)

Solution: Let f be a CNF formula where each clause contains at most 3 literals,
and let the underlying variables of f be x1, . . . , xn. We will replace each clause
Ci in f by a new conjunction of zero or more equivalent clauses as follows:

(1) if Ci contains three distinct literals then let C ′
i = Ci.

(2) Otherwise let Ci = (l1 ∨ l2) where l1, l2 are distinct literals. Then we replace
Ci by C ′

i = (l1 ∨ l2 ∨ yi) ∧ (l1 ∨ l2 ∨ ¬yi), where yi is a new variable.

(3) Otherwise Ci contains only one literal, so Ci = (l1). Then we replace Ci by
C ′
i = (l1 ∨ yi ∨ zi)∧ (l1 ∨¬yi ∨ zi)∧ (l1 ∨ yi ∨¬zi)∧ (l1 ∨¬yi¬zi), where yi, zi

are new variables.

2



Let g be the conjunction of all of C ′
is. It is left to prove that f is satisfiable if

and only if g is satisfiable. Given an assignment to the original x variables that
satisfies f , when we plug this assignment into g it will also be satisfiable since all
we did was add variables to some original clauses which were already satisfied.
On the other hand, given an assignment to all of the x, y, z variables of g, we
claim that if this assignment satisfies g, then the x-part of the assignment will
satisfy f . This holds because the only way to satisfy C ′

i is to satisfy Ci itself.
Finally the reduction from f to g is polynomial-time in the length of f since we
convert each clause Ci one-by-one and each conversion is linear-time.

5. (15 points) The problem k-minSAT takes as input a CNF formula f over n Boolean
variables x1, . . . , xn and a number k ≤ n, and accepts if and only if f has a satisfying
assignment with at most k 1’s.

(a.) Prove for any constant k, k-minSAT is in P . (e.g., 3-minSAT is in P .)

Solution: For constant k, the number of assignments to x1, . . . , xn with at most
k 1’s is:

∑k
i=0

(
n
k

)
which is O(nk) when k is constant, and thus is polynomial in

n. Thus we can solve k-minSAT on f by enumerating over all assignments with
at most k 1’s (they can be enumerated in polynomial-time) and then check for
each one whether or not it satisfies f ; if at least one satisfies f then we accept
and otherwise we reject.

(b.) Prove that k-minSAT is NP -complete.

Solution: To see that k-minSAT is NP -complete, we first note that k-minSAT
is in NP since a nondeterministic polytime can guess an assignment with at most
k 1’s and verify whether or not it satisfies f . Thus it is left to prove that it is
NP-hard. We will prove this by showing that 3SAT polynomial-time reduces to
k-minSAT. Given an input f to 3SAT, it is in 3SAT if and only if iff (f, k = n)
is in k-minSAT. Therefore since 3SAT is NP-hard this implies that k-minSAT is
also NP-hard.

3


