
COMS 3261, Computer Science Theory (Fall 2023): Assignment 3
Due on Gradescope 11:59pm, Monday Nov 20, 2023

Instructions

• The total number of points is 55 and there are two pages. Submit your solutions in
pdf format. Late homeworks will not be accepted.

• You can discuss with TAs, the prof, and other students, but please acknowledge them
at the beginning of each problem. All solutions must be written in your own words.

• You should be able to solve questions 1-4a already; the material required to solve
questions 4b and 5 will be covered Nov 8 and Nov 13.

Problems

1. (10 points) Give a formal description of a one or two tape input-output Turing
machine that takes a string w ∈ {0, 1}∗ as input and halts with wR (the reverse of
the string w) on the first tape. For example, if the tape initially contains the input
“11001” (followed by blanks), then after halting the tape should be contain ‘10011’
(followed by blanks). Include a brief high level description of your TM.

High level description:

(a) First we replace the leftmost symbol with ‘a’ if it is ‘0’ and ‘b’ if it is ‘1’, to
indicate the left end of the tape. Then, we copy the input string, which is on
tape 1, to tape 2 from left to right. Once we hit a blank, we move to step two.

(b) Move tape head 2 once to the left, and move tape head 1 to the left until we
reach the symbol ‘a’ or ‘b’. Write the value pointed to by head 2 (currently at
end of the input string) to the cell pointed to by head 1. Then move head 2 one
cell to left and head 1 one cell to the right, and loop.

(c) Finally, once head 2 points to ‘a’ we write 0 on the cell pointed to by head 1 and
halt; otherwise if head 2 points to ‘b’ then we write 1 on the cell pointed to by
head 1 and halt. At this point the reversed string is written on tape 1.

Formal definition:

We define the input-output Turing Machine M as follows:

M = (Q,Γ,Σ, δ, q0, F )

where:

• Q = {q0, qmark, qmove, qreverse, qf} is the set of states.

• Γ = {0, 1, a, b,⊔} is the tape alphabet.

• Σ = {0, 1} is the set of input symbols.
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• δ is the transition function, defined as:

δ(q0, (0,⊔)) = (qmark, (a, a), (R,R))

δ(q0, (1,⊔)) = (qmark, (b, b), (R,R))

δ(qmark, (0, x)) = (qmark, (0, 0), (R,R)) for any x ∈ {0, 1}
δ(qmark, (1, x)) = (qmark, (1, 1), (R,R)) for any x ∈ {0, 1}
δ(qmark, (⊔, x)) = (qmove, (⊔, x), (L,L)) for any x ∈ {0, 1}
δ(qmove, (x, y)) = (qmove, (x, y), (L, S)) for any x, y ∈ {0, 1}
δ(qmove, (a, y)) = (qreverse, (a, y), (S, S)) for any y ∈ {0, 1}
δ(qmove, (b, y)) = (qreverse, (b, y), (S, S)) for any y ∈ {0, 1}

δ(qreverse, (x, y)) = (qreverse, (y, x), (R,L)) for any x, y ∈ {0, 1}
δ(qreverse, (x, a)) = (qf , (0, 0), (S, S)) for any x

δ(qreverse, (x, b)) = (qf , (1, 1), (S, S)) for any x

• q0 is the initial state.

• F = {qf} is the set of final states.

2. (10 points) Prove that for every infinite set S, the following are equivalent:

(i) There exists a function g : N → S that is onto (i.e., g is surjective).

(ii) There exists a function f : S → N that is one-to-one (e.g., f is injective).

Let S be an infinite set. We first prove (i) implies (ii). Let g : N → S be an onto
function. We want to show that there exists a 1-to-1 function f : S → N. For each
s ∈ S, let f(s) be equal to the minimum natural number x ∈ N such that g(x) = S.
First note that f is well-defined since g is onto – that is, for every s g maps at least
one element x in N to s. Also f is one-to-one since g is a function – that is, since g
maps each x ∈ N to exactly one s ∈ S, it follows that for each x ∈ N, there is at most
one s ∈ S such that f(s) = x.

To prove (ii) implies (i), we want to prove that if f : S → N is one-to-one, then there
exists g : N → S that is onto. For each x ∈ N, we define g(x) to be f−1(x) if f maps
something to x, and otherwise let g(x) = s0 where s0 is some fixed element in S.
(Note that S is infinite so s0 exists.) First, g is well defined: if x is in the range of f
then there is a unique inverse (since f is one-to-one) and if x is not in the range of f
then we map x to s0. Secondly, g is onto: since f is a function, f maps every s ∈ S
to exactly one natural number and therefore for every s ∈ S, g maps some natural
number to s.

3. (10 points) Consider the language LDFA which accepts an input w if w is an encoding
of a DFA A, where A accepts at least one input x ∈ {0, 1}∗.

a. Prove that LDFA is decidable by giving a high-level description of a TM that
always halts and that accepts exactly the strings in LDFA.

We give a high level description of an algorithm, A for deciding LDFA. The input
to A is the encoding of a DFA, M = (Q,Σ, q0, F, δ). The basic idea is to see
if there is a path from q0 to some final state in F in the state transition graph
associated with M .
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– First decode the encoding of M in order to create the state transition graph
associated with M . The vertices correspond to the states qi ∈ Q. For every
state qi ∈ Q there are |Σ| edges, one for each symbol a ∈ Σ.

– Initially Visited = {q0}.
– Repeat for |Q| steps: For each qi ∈ Visited, for all vertices qj that are

neighbors of qi, add qj to Visited (if it is not already in the set).

– If Visited contains some qi ∈ F , halt and accept; otherwise halt and reject.

Proof of correctness. First our algorithm terminate on every input. Second we
want to show that M accepts at least one input if and only if A accepts M . The
main idea is that if there is a directed path from q0 to some final state q ∈ F ,
then the string corresponding to this path will be accepted by M . Secondly, it
suffices to consider paths of length at most |Q| since there are only |Q| states,
so there is a path from q0 to some state q ∈ F if and only if there is a path of
length at most |Q| from q0 to q. Therefore, if there is no path of length at most
|Q| from q0 to an accept state, then M does not accept any inputs.

b. In one or two sentences, explain what goes wrong with your algorithm if you
were to apply similar ideas to try to prove that LTM is decidable (where LTM

accepts the set of encoding of TMs that accept at least one input).

Since TMs have unlimited memory, the set of possible distinct configurations that
a TM can be in on an input can be infinite. For example, consider a TM that
on input x computes the number π. Since π is irrational it consists of an infinite
sequence of decimals, so the contents of the tape at each time step is distinct, and
the TM runs forever. Therefore it reaches an infinite sequene of configurations.
DFAs on the other hand cannot write, so the set of configurations is just the
set of possible states, which is finite. For this reason it is possible to figure out
in a finite amount of time whether a final configuration is reachable for a given
DFA, but this argument can’t work for a TM since its set of configurations can
be potentially infinite.

4. (15 points) Let Lpair be the set of all encodings of Turing machines <M> such that
there is a pair of consecutive binary numbers that are both accepted by M . (For
example, if a Turing machine M accepts both 100 and 101 then <M> is in Lpair.)

a. Prove that Lpair is recognizable (r.e.) by giving a high-level description of a
Turing Machine that accepts Lpair.

This is similar to the description of a TM accepting Nonempty which contains
the strings < M > such that L(M) is nonempty. For that question we gave
the following algorithm, A for recognizing Nonempty on input < M >: For
i = 1, 2, . . . . : Simulate M on each of the first i inputs, w1, . . . , wi for i steps
each. If any of these simulations halts and accepts, the A halts and accepts M .

For this question we give a modification, A′ of the above algorithm on input
< M >: For i = 1, 2, . . .: Simulate M on each of the first i inputs, w1, . . . , wi

for i steps each. If for some j < i M accepts both wj and wj+1, then halt and
accept.

The argument that A′ accepts exactly Lpair is similar to that given in the lecture
notes for A (and in the book). (Details omitted here.)
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b. Prove that Lpair is not decidable (not recursive).

The mapping reduction given in question 5 below also works here to show that
Lpair is not recursive.

5. (10 points) Let LPrime = {<M> | the number of strings accepted by M is prime}.
Classify this language as either (i) decidable, (ii) recognizable but not decidable, or
(iii) not recognizable. Prove your answer. You may give a high-level description
of any TM programs used in your proof. (You should not use Rice’s theorem.)

We will give a mapping reduction, f , from ATM to LPrime. Note that this is also
a mapping reduction from ATM to LPrime, and therefore since ATM is not r.e., this
implies that LPrime is also not r.e.

f will map < M,w > to < M ′ > where M ′ is the following Turing Machine. M ′

on input x: If x ∈ {0, 00, 000} then immediately halt and accept x. Otherwise M ′

simulates M on input w. If M halts and accepts w, then M ′ halts and accepts x.
Otherwise halt and reject.

f is computable (since given < M,x >, the encoding of M ′ can be computed). Next
we will argue that < M,w >∈ ATM if and only if f(< M,w >) ∈ LPrime. First let
< M,w >∈ ATM . Then M ′ will accept any input, and therefore |L(M ′)| = ∞ which
is not a prime number. Now assume that < M,w ≯∈ ATM . Then M ′ will only accept
strings 0, 00, 000, so |L(M ′)| = 3 which is prime.
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