
COMS 3261, Computer Science Theory (Fall 2023): Assignment 2 Solu-
tions

Instructions

• All problems 6 are worth 10 points.

• Submit your solutions in pdf format. Late homeworks will not be accepted.

• You can discuss with TAs, the prof, and other students, but please acknowledge
them at the beginning of each problem. All of your solutions must be written
in your own words.

Problems

1. a. At any given time, the stack should have either all 0’s or all 1’s. If it is just
0’s on the stack, then the number of 0’s in the stack equals to the number
of 0’s so far minus twice the number of 1’s seen so far. If it is just 1’s on
the stack, the number of 1’s on the stack equals twice the number of 1’s
seen so far minus the number of 0’s seen so far. Thus, we can construct
the following PDA:

q0 q1

q2

q3

ϵ, ϵ → $

1, ϵ → 11

ϵ, $ → $

0, 1 → ϵ

1, 1 → 111

1, 0$ → 1$

0, 0 → 00

1, 00 → ϵ

ϵ, $ → $
0, ϵ → 0

1

b. The language can be written as L1 ∪ L2 ∪ L3 ∪ L4, where:

L1 = {aibjck | i < j}
L2 = {aibjck | i > j}
L3 = {aibjck | j < k}
L4 = {aibjck | j > k}

For lanauge L1 ∪ L2, we push an a every time we read an a, then we pop
an a every time we read a b. In order to check when the number of b’s is
equal to the number of a’s, we push a special symbol L on the first a. The
same is done for L3 ∪ L4 for the symbols b and c. Thus, we can construct
the following PDA:

q0

q1

q2

ϵ, ϵ → $

ϵ, ϵ → $

qa>b qa>b qa=b qb>a

qc

a, ϵ → L

b, $ → $

a, ϵ → a

b, a → ϵ

b, L → ϵ

b, L → ϵ

b, a → ϵ

c, ϵ → ϵ

b, $ → $
b, ϵ → ϵ

c, ϵ → ϵ

c, ϵ → ϵ

qb>c qb>c qb=c qc>b

a, ϵ → ϵ

b, ϵ → L

c, $ → $

b, ϵ → b

c, b → ϵ

c, L → ϵ

c, b → ϵ

c, L → ϵ c, $ → $

c, ϵ → ϵ

2

2. a. (Extra Credit) We can construct the following CFG:

S → A | B | AB | BA

A → a | aAa | aAb | bAb | bAa
B → b | aBa | aBb | bBb | bBa

We claim that AB and BA never generates a string of the form ww. A
generates string of form (a + b)ka(a + b)k with length 2k + 1, k ≥ 0. B
generates strings of form (a+ b)kb(a+ b)k, k ≥ 0. Thus, the string gener-
ated by AB has the form (a + b)ka(a + b)k(a + b)k

′
b(a + b)k

′
with length

2k + 1 + 2k′ + 1. This is not of the form ww since positions k + 1 and
2k+1+2k′+1

s
+ k + 1 = (k + k′ + 1) + k + 1 differ.

Using the claim above, we can show this grammar generates exactly the
string not of form ww. String x ∈ {ww} if and only if one of the following
conditions hold:

(1) |x| is odd
(2) |x| is even and ∃i such that xi ̸= x |x|

2
+i

Our grammar generates all x satisfying (1), since rules S → A, S → B
and A generates all odd length strings with a in the middle, B generates
all odd length strings with b in the middle. For proving (2), let string
x = x1x2, |x1| = |x2| = n. Since x1 ̸= x2, let them differ in position i, say
x1
i = a and x2

i = b. Let s1 be the substring of x1x2 of length 2i − 1, let
s2 be the remaining part of x1x2 with length 2n− (2i− 1) = 2(n− i) + 1.

Since s1 has odd length and its middle symbol is an a, A
∗
=⇒ s1. Similarly,

since s2 has odd length and middle symbol is a b, B
∗
=⇒ s2. Thus S →

AB
∗
=⇒ s1s2 = x1x2. The same could be proved for x1

i = b and x2
i = a,

S → BA
∗
=⇒ s1s2 = x1x2.

3

b. The language can be considered as the union of the following:

L1 = {aibi | i < j}
L2 = {aibj | j > i}
L3 = b(a+ b)∗ + a(a+ b)∗b(a+ b)∗a(a+ b)∗

We can construct a CFG for each of the above languages:

L1 :S1 → aS1b | S1b | b
L2 :S2 → aS2b | aS2 | a
L3 :S3 → bA | aAbAaA

A → ϵ | aA | bA

Then we can define the CFG for the complement of {anbn | n ≥ 0} as
V = {S, S1, S2, S3, A}, and S is the start variable:

S → S1 | S2 | S3

S1 → aS1b | S1b | b
S2 → aS2b | aS2 | a
S3 → bA | aAbAaA

4

3. a. Assume L = {aibj | j = i2} is context free. Let p be the pumping length,
choose string w = apbp

2
. There must exist some partition w = uvxyz,

|vxy| ≤ p, |vy| ≥ 1, such that uvmxymz ∈ L, where m ≥ 0. There are 4
possible partitions for w:

Case 1) vxy are all a’s
Suppose vxy = anakam, and n + m > 0. We can pump up: w′ =
uv2xy2z = ap+n+mbp

2
, but (p+ n+m)2 ̸= p2, thus w′ /∈ L.

Case 2) vxy are all b’s
Suppose vxy = bnbkbm, and n + m > 0. We can pump up: w′ =
uv2xy2z = apbp

2+n+m, but p2 ̸= p2 + n+m, thus w′ /∈ L.

Case 3) Either v has both a’s and b’s, or y has both a’s and b’s
Suppose v = anbm and xy = bk. We can pump up: w′ = uv2xy2z
since v2 is of form anbmanbm but all strings in L must have form a∗b∗,
w′ /∈ L. Similarly, suppose vx = ak and y = anbm. Since y2 is of the
form anbmanbm but all strings in L must have form a∗b∗, w′ /∈ L.

Case 4) v has just a’s and y has just b’s
Let u = ai, v = aj, x = ap−i−jbk, y = bl, z = bp

2−k−l, j + l ≥ 1. Choose
w′ = uvp

2+1xyp
2+1z, then w′ has p+ p2i a’s and p2+ p2j b’s. However,

since p > 0 and j ≤ p, (p+ p2i)2 = p2+ p4i4+2p3i > p2+ p2j, w′ /∈ L.

We find a contradiction, therefore L is not context free.

b. Assume L = {ai | i is prime} is context free. Let p be the pumping length,
choose string w = ap

′
, where p′ > p and p′ is a prime number. There

must exist some partition w = uvxyz, |vxy| ≤ p, |xy| ≥ 1, such that
uvmxymz ∈ L, where m ≥ 0. Suppose |vy| = k ≥ 1, we can pump up:
m = p′ + 1, then w′ = uvp

′+1xyp
′+1z = uvvp

′
xyyp

′
z. Since w′ is in form

a∗, w′ = uvxyzvp
′
xp′ = ap

′
akp

′
= ap

′+kp′ . However, p′(k + 1) is not a prime
number, therefore w′ /∈ L, and L is not context free.

5

4. We can prove that CFL’s are not closed under complement by providing a
counter example. Let L = {aibjck | either i ̸= j or j ̸= k}, let L0 = {w | w ̸=
a∗b∗c∗}. We know that both L and L0 are CFL’s. L1 = {anbncn | n ≥ 0} is not
CFL. We can write L1 = L ∪ L0. Assume CFLs are closed under complement,
then since CFLs are also closed under union and L and L0 are both CFLs, L1

must be CFL and L1 must also be CFL. However, we know L1 is not a CFL, so
there is a contradiction. Therefore CFLs are not closed under complement.

6

