
COMS W3261 : Computability review
Sayak Chakrabarti

1 Relations and functions

Definition 1 (Relations). A relation R : X → Y is given as a subset of X×Y = {(x, y)|x ∈ X, y ∈
Y }.

For example, we define the relation R : N → N, (x, y) ∈ R if x − y is even. Some elements of this
relation are {(1, 3), (2, 8), (1, 5), (3, 5) . . . }.

Definition 2 (Function). A function f : X → Y is an assignment of an element of Y to each
unique element of X. We formally write it as f(x) = y.

Notice that unlike relations where both (x, y1), (x, y2) can be included, functions have a unique
mapping from x to y, i.e. f(x) = y1 and f(x) = y2 implies y1 = y2. However, we can have
f(x1) = f(x2) = y for distinct x1, x2’s.

Definition 3 (Surjective or onto). A function f : X → Y is said to be surjective or onto if every
element in Y is the mapping of some element in X.

The size of the sets, denoted by the cardinality | · |, can be compared as |X| ≥ |Y |.

Definition 4 (Injective or one-one). A function f : X → Y is said to be injective or one-one if
every element in X is mapped to a unique element in Y .

We have the cardinalities as |X| ≤ |Y |.

We make some comments about cardinality of some sets as follows:

• |N| = |2N|, where 2N denotes the set of even natural numbers. We prove this as constructing
two functions as follows:

1. Define f : 2N → N as f(a) = a, which is a one-one function. This implies that |N| ≥ |2N|.
2. Define the function g : N → 2N as g(a) = 2a, which is a one-one function, implying

|N| ≤ |2N|.

• The set of positive rational numbers |Q+| = |N|.

1. We know that every positive rational number can be written as p
q , where p, q ∈ N. Define

f : Q → N given as f(p/q) = 2p3q. This is a one-one function, implying |Q+| ≤ |N|.

Exercise 1. Prove that |Q| = |N|.

Definition 5. A set S is said to be countable if there exists an injective function f : S → N.

2 Computability

2.1 Configuration graph

We define the configuration graph of a DFA to study the states possible after transitions. Let us
assume we have a DFA given as (Q, δ,Σ, F). We construct a directed graph G consisting of vertices
corresponding to each state qi ∈ Q. There exists an edge from qi and qj if for some a ∈ Σ, we have
δ(qi, a) = qj . We label this edge as a. There can be several labels to some edge. Now notice that

2

in the graph, there exists a path from qi to qℓ if there exists a sequence of transformations from
qi− > qi1− > qi2− > . . .− > qℓ in the original DFA. Using the labels on the edges, the sequence of
strings which lead to these transformations can be found.

Exercise 2. Prove that if the starting state is q0 and the final state is qf , a path from q0 to qf
exists if and only if there is some sequence of strings that are accepted by the DFA.

2.2 Dovetailing

Let us consider an example where we are interested in checking if a string from a given set of
infinitely many strings is accepted/rejected by a Turing machine M . Let us assume the set of
strings is S = {w1, w2, . . . }.

We first try a trivial approach, as follows:

• Run M on w1 until it halts (accepts/rejects).

• Move on to the nect string w2.
...

However, the problem arises if M never halts on w1 and we will never be able to move on to the
next string. In order to circumvent this problem, we consider the dovetailing method as follows by
creating a new TM N :

• For step i = 1, 2, 3, . . . :

– Run M on w1, w2, . . . , wi for i steps each.

– If for any wk for k ∈ [i]1, M(wk) halts in less than or equal to i steps, return whatever
M(wk) had returned.

The TM runs as
1 - M(w1) for 1 step.
2 - M(w1) for 2 steps, M(w2) for 2 steps.
3 - M(w1) for 3 steps, M(w2) for 3 steps, M(w3) for 3 steps.
4 - M(w1) for 4 steps, M(w2) for 4 steps, M(w3) for 4 steps, M(w4) for 4 steps.

Exercise 3. Prove the following:

1. Every string is considered to run for any finite amount of steps.

2. If M halts on some string wj , N(wj) halts after a finitely many steps.

1[i] refers to the set {1, 2, . . . , i}

3

3 Reductions

We prove some examples of reductions among languages. We say that a language L reduces to a
language P , L ≤ P , if we can use the Turing machine of P to construct one for L.

The Turing machines have standard notations as described in class.

Example 1. HALTTM ≤ ATM .

Let us assume that there is a decider N for ATM , and we construct a TM for HALTTM using N
as follows:

1. We are given input ⟨M,w⟩ to HALTTM .

2. If N accepts accepts ⟨M,w⟩, return accept.

3. Create a new TM N ′ as follows:

(a) On input x, run M on x.

(b) If M accepts x, return reject.

(c) If M rejects x, return accept.

4. Run N on ⟨N ′, w⟩. If N ′ accepts, return accept.

Exercise 4. Prove that

• (M,w) ∈ HALTTM if either M halts and accepts w, or M halts and rejects w.

• If M rejects w, then N ′ accepts w.

Example 2. Prove that L = {⟨M,D⟩|M is a TM, D is a DFA, L(M) = L(D)}, is undecidable.

We will reduce an undecidable language ATM to L, i.e. considering a decider N for L, we will
construct a decider for ATM . Now, if L were decidable it will imply that we will be able to solve
ATM , which will lead to a contradiction as we already know that ATM is undecidable.

The main idea is, given an input ⟨M,w⟩, create DFA Dw which accepts only the string w, and a
TM Mw which accepts only the string w if and only if M accepts w, no string otherwise.

The construction for ATM is as follows:

1. We are given with an input ⟨M,w⟩ for ATM .

2. Construct DFA Dw such that L(Dw) = {w}.

3. Construct Mw as follows:

4

(a) On input x such that x ̸= w, Mw(x) rejects.

(b) If x = w, then run w on M . If M(w) accepts, then accept, and if M(w) rejects, then
reject.

4. Run N on ⟨Mw, Dw⟩.

(a) If N accepts, then accept.

(b) If N rejects, then reject.

Notice that since L(Dw) = {w}, L(Mw) = L(Dw) if and only if M accepts w. Now, by assumption,
N can decide if L(Mw) = L(Dw) and therefore ⟨M,w⟩ ∈ ATM . However, if ⟨M,w⟩ ̸∈ ATM then
L(Mw) = ϕ, implying that L(Mw) ̸= L(Dw). In this way ATM can be simulated, and if N is
decidable then so is ATM , a contradiction.

5

