Computer Science Theory, Test 2 Review Problems Prof. Toniann Pitassi

1. Answer True or False for each statement. No justification is needed.
(a) $n=O\left(n^{2}\right)$
(b) $n \log n=O(n)$
(c) $n^{n}=O\left(2^{n}\right)$
(d) Let A be mapping reducible to B. If B is decidable then A must be decidable.
(e) Let A be mapping reducible to B. If A is decidable then B must be decidable.
(f) If the complement of a language L is not recognizable then both L and $\neg L$ are not recognizable.
(g) If A is NP-complete, $A \subseteq B$, and B is in NP then B is NP-complete.
(h) If B is NP-complete and $A \subseteq B$ and A is in NP then A is NP-complete.
2. Let Double-CLIQUE denote the language consisting of all pairs (G, k) such that G is an undirected graph containing two disjoint cliques each of size k. Prove that DoubleCLIQUE is NP-complete.
3. Prove that the following set is countable.

$$
S=\{(i, j) \mid i \geq 0 \text { and } j>i\}
$$

4. Prove that the following set is countable.

$$
S=\left\{L \subseteq\{0,1\}^{*} \mid \text { the number of strings in } L \text { is finite }\right\}
$$

5. Prove that NP is closed under union. That is, for every $L_{1}, L_{2} \in \mathrm{NP}, L_{1} \cup L_{2}$ is also in NP.
6. Prove that NP is closed under concatenation.
7. Let L be the language consisting of all pairs $<M>$ such that M encodes a Turing machine and M accepts at least two inputs.
(a) Prove that L is recognizable.
(b) Prove that L is not decidable.
8. Recall that 3SAT is the set of all 3-CNF formulas ϕ such that ϕ is satisfiable. Let Search-3SAT be the following search problem: Given a 3CNF formula ϕ, output a satisfying assignment for ϕ if one exists, and otherwise output " ϕ is unsatisfiable". Prove that if $3 S A T \in P$, then Search-3SAT can be solved in polynomial-time by a deterministic TM.
