Pumping Lemma and PDA Review Session

October 5, 2023

1 Definitions

1.1 Pumping Lemma

Definition:

If L is a regular language, then there exists a number p, such that for all strings w where $w \in L$ and $|w| \geq p$, there exists a way to divide w into three pieces, $w=x y z$, satisfying the conditions

1. $|y|>0$
2. $|x y| \leq p$
3. for each $i \geq 0, x y^{i} z \in L$

NOTE: There are non-regular languages that also satisfy the pumping lemma, the pumping lemma must be applied carefully to prove non-regularity. In particular, the contrapositive of the pumping lemma is used to prove non-regularity of a language.

Template: For a language L , if for all p, there exists a string w where $w \in L$ and $|w| \geq p$, such that every way to divide w into three pieces $w=x y z$ satisfying $|y|>0$ and $|x y| \leq p$, there exists an $i \geq 0$ such that $x y^{i} z \notin L$, then L is not regular.

1.2 PDA

Definition: A PDA is a 6 -tuple $\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ where Q, Σ, Γ, and F are finite sets, and

1. Q is the set of states
2. Σ is the input alphabet
3. Γ is the stack alphabet
4. $\delta: Q \times\{\Sigma \cup \epsilon\} \times\{\Gamma \cup \epsilon\} \rightarrow \mathcal{P}(Q \times\{\Gamma \cup \epsilon\})$
5. $q_{0} \in Q$ is the start state
6. F is the set of accepting states

A PDA M accepts a word w if w can be written as $w=w_{1} w_{2} w_{3} \cdots w_{n}$ where $w_{i} \in\{\Sigma \cup \epsilon\}$ and there is a sequence of states $r_{0}, r_{1}, r_{2}, \cdots, r_{n} \in Q$ and a sequence of stack content strings $s_{0}, s_{1}, s_{2}, \cdots, s_{n} \in\{\Gamma \cup \epsilon\}^{*}$ that satisfy the following conditions:

1. $r_{0}=q_{0}$ and $s_{0}=\epsilon$ indicating that M starts on the start state with an empty stack.
2. M makes a valid transition at each step: for $i=0,1, \cdots, n-1,\left(r_{i+1}, b\right) \in$ $\delta\left(r_{i}, w_{i+1}, a\right)$, where $s_{i}=a t$ and $s_{i+1}=b t$ for some $a, b \in\{\Gamma \cup \epsilon\}^{*}$ and $t \in \Gamma$.
3. $r_{n} \in F$ indicating that the computation ends on an accepting state.

2 Practice Problems

1. Use the pumping lemma to prove the following languages are not regular:
(a) $L=\left\{0^{k} 1 w 0^{k} \mid k \geq 1\right.$ and $\left.w \in\{0,1\}^{*}\right\}$
(b) $L=\left\{0^{k} \mid k\right.$ is a power of 2$\}$
(c) $L=\left\{0^{i} 1^{j} \mid i>j\right\}$
(d) $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ has equal number of 0's and 1's $\}$
2. Consider the language $L=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0\right.$ and if $i=1$ then $\left.j=k\right\}$
(a) Show that L satisfies the pumping lemma
(b) Show that L is non-regular
3. Run the strings 10,010 , and 1101 on the PDA below:

4. Construct PDA's for the following languages:
(a) $L=\left\{w \in\{0,1\}^{*}| | w \mid\right.$ is odd and the middle bit of w is a 1$\}$
(b) The set of all strings over $\{0,1,[],,()$,$\} where parenthesis and brack-$ ets are properly matched.
(c) The set of all strings over $\{0,1\}^{*}$ that do not contain the substring 001 , or have more 1 's than 0 's.
