COMS W3261 Fall 2022 Handout 7a: Midterm Review

Helen Chu and Eumin Hong

October 22, 2022

1 Problem Set A: Regular Languages

Design finite automata for the following languages. You can give the DFA/NFA by their transition diagrams. You do not need to show that they are correct.
Note: In your transition diagrams, you can use shorthand notation on the labels of the edges. For example, you can label an edge by $\Sigma \backslash\{a\}$ to indicate that the transition takes place for all input symbols except a. Make sure to specify the starting state and the accepting states in your diagrams.

1. L is the language over the alphabet $\Sigma=\{0,1,2\}$ consisting of all strings that:

- Every 0 is immediately followed by a 1 , every 1 is immediately followed by a 2 , and every 2 is immediately followed by a 0 .
- The string starts and ends with the same symbol.
- The string must have length at least 1 .

2. The set of strings over the alphabet $\Sigma=\{a, b, \ldots, z\}$ that contain at least one m between any two a 's in the string; for example $a b c, j o h n$, mama, american are in the language, but papa, panamerican are not.
3. Challenge: The set of binary strings which represent in binary a number that is an integer multiple of 3 (leading zeros are allowed). For example, 00, 110 are in the language (they correspond to 0,6 respectively), but 001, 101 are not (they correspond to 1,5). Hint: Three states are enough. Think about what each additional symbol in a binary string does to the number; it might be helpful to write out some examples.

For the following problems, if a language L is given, prove that L is regular or prove that L is nonregular. 4. $L=\left\{w w \mid w \in\{0,1\}^{*}\right.$ and w contains at least one 0 and at least one 1$\}$ over the alphabet $\Sigma=\{0,1\}$.
5. Prove that the union of a regular language L_{1} and nonregular language L_{2} such that $L_{1} \cap L_{2}=\emptyset$ results in a nonregular language.
6. $L=\left\{a^{i} b^{j} c^{k} \mid i+j=k\right\}$.
7. $L=\left\{0^{k} u 0^{k} \mid k \geq 1, u \in \Sigma^{*}\right\}$.
8. $L=\left\{0^{k} 1 u 0^{k} \mid k \geq 1, u \in \Sigma^{*}\right\}$.
9. $L=\left\{0^{i} 1^{j} \mid i, j \geq 0, i \neq j\right\}$.
10. $L=\left\{0^{n} 1^{n} \mid 0 \leq n \leq 3\right\}$.
11. Challenge: L is the language consisting of all strings of a 's and b 's with an equal number of occurrences of $a b$ and $b a$ as substrings. (The string aabbbaa has one occurrence of each of the substrings $a b$ and $b a$.)

2 Problem Set B: Context Free Languages

1. Show that the language

$$
L=\left\{a^{i} b^{j} \mid i, j \geq 0, i \leq j \leq 3 i\right\}
$$

is context-free.
2. Give a context-free grammar that generates the language

$$
L=\left\{a^{i} b^{j} c^{k}: i=j \text { or } j=k \text { where } i, j, k \geq 0\right\}
$$

Is your grammar ambiguous? Why or why not? (Consider the string $a^{n} b^{n} c^{n}$.)
3. Construct a pushdown automata for the language

$$
L=\left\{a^{n} b^{k} c^{n} \mid n, k \geq 0\right\}
$$

4. Describe the language that the following PDA recognizes:

5. Challenge: For any language L, let $\operatorname{SUFFIX}(A)=\{v \mid u v \in L$ for some string $u\}$. Show that the class of context-free languages is closed under the SUFFIX operation.
6. Challenge: Show that the complement of the language

$$
L=\left\{w w \mid w \in \Sigma^{*}\right\}
$$

is context-free.

