
COMS 3261 Fall 2023 Review Handout:

Turing Machines

Yihan Shen
Credit to Fall 2022 TA Andrew Jin and Anastasija Tortevska

1 Definition

A Turing Machine is a 7-tuple, (Q,Σ,Γ, δ, q0, qaccept, qreject):

1. Q is a finite set of states.

2. Σ is the (finite) input alphabet not containing the blank symbol.

3. Γ is the (finite) tape alphabet, where ⊔ ∈ Γ and Σ ⊂ Γ.

4. δ : Q× Γ → Q× Γ× {L,R} is the transition function.

5. q0 ∈ Q is the start state.

6. qaccept ∈ Q is the accept state.

7. qreject ∈ Q is the reject state, where qreject ̸= qaccept.

For a Turing Machine M :

• M receives its input w = w1w2...wn ∈ Σ∗ on the left-most n squares of
the tape, leaving the rest of the tape blank. The start configuration on
input w is q0, where the reading head is pointing to the first (leftmost)
square of the tape, and the state is q0. Then at each step, the transition
δ is applied.

• First blank symbol marks the end of input (initially, afterwards M could
write blank symbols anywhere).

• If M ever tries to move its head to the left of the leftmost square of the
tape, it stays in place.

• It may sometimes be helpful to have an indicator symbol like #, to indicate
the leftmost position of the tape, but this is not automatically there (so
if this is not defined as a requirement for a valid input, the TM could be
designed to start by inserting it).

1



• If at any point δ takes M to qaccept or qreject, then M halts, and we
say it accepted/rejected the string. Otherwise, if δ keeps being applied
(algorithm keeps running) without ever accepting or rejecting, then we say
this machine runs forever (or is in an infinite loop). A TM that always
halts on every input is called a decider.

• On any input, there are three possible behaviors of a TM M : M will
accept, reject, or run forever on this input. The language recognized by a
Turing Machine M is the set of strings that M accepts.

2 Implementation-Level Example: Using Tur-
ing Machine to Compute Functions

Example 1

Let Σ = {#, a, b, c}. We aim to provide an implementation level description of
an input-output Turing Machine (TM) that computes the following function:

f(x) = #x

Solution 1

Idea: Essentially, we need to insert a # key in the beginning and move every
character in x one position to the right on the tape. Therefore, we can use the
states of the Turing Machine to remember which symbol we need to add to move.

Implementation:
States:

• qstart: The start state.

• qa: State for remembering to add symbol ”a” next

• qb: State for remembering to add symbol ”b” next

• qc: State for remembering to add symbol ”b” next

• qhalt: Halting(accepting) state

Transition Function (δ):

1. From qstart, look at the first symbol in the input string, transition to the
next state representing that symbol, write a # on the tape, and move
right.

2. In qa, remember the symbol that the head is currently pointing to, tran-
sition to that corresponding state, and write a symbol ”a”, and move the
head to the right. Same thing for qb,qc

2



3. In any state, if current symbol encountered is blank, it means that we’ve
reached the end of the string, then write the symbol corresponding to
current state, and finish by transitioning to the halting state.

Diagram

Example 2

Let Σ = {#, 0, 1}. We aim to provide an implementation level description of an
input-output Turing Machine (TM) that computes the following function:

f(#⟨a⟩#⟨b⟩) = f(#⟨a+ b⟩)

where 〈x〉 stands for the binary representation of the number x.

Solution 2

Idea We have two ways of achieving this: we can either use a(or b) as a counter
and decrement it by 1 every time while increasing b(or a) by 1. Alternatively,
we can also implement a full-adding Turing machine, which would perform ad-
dition as we normally would on paper. The description given here uses the first
approach. Please observe that we still need to deal with the case of using extra

3



tape cells.

Implementation
States:

• qstart: The start state.

• qa scan: State for scanning right on string a to find the end of the first
number.

• qa subtraction: State for performing the subtraction on a.

• qa move right: State for moving the head after the subtraction on a.

• qb scan: State for scanning right on string b to find the end of the second
number

• qb addition: State for performing the addition on string b

• qb move left: State for moving the head after the addition on b.

• qcleanup: State for cleaning up the tape and preparing the output.

• qaccept: Accept state.

Transition Function (δ):

1. From qstart, expect the # symbol and transition to qa scan, move to right
position

2. In qa scan, move right until you encounter a # symbol (representing the
end of the first number). Transition to qa subtraction and move left.

3. In qa subtraction, perform the subtraction by the following. If the next digit
is 0, change it to 1 and continue moving left. If it’s 1 change it to 0 and
stop carrying. Transition to qa move right and move right

4. In qa move right, move right until you see a # symbol, indicating that we’ve
reached the end of a. Then, transition to qb scan and move right.

5. In qb scan, similar to that of a, move right until you see a blank symbol,
indicating that we’ve reached the end of b, at which point it moves left
and transitions to qb addition

6. The logic in qb addition is similar to that of a, except that it’s reversed. It
continues moving left and carrying over as long as it sees consecutive 1s.
On the first 0, it changes 0 to 1 and transitions to qb move left.

7. In qb move left, it moves left with all symbols until seeing a #, which indi-
cates that it has reached the end of number a. At that point, it repeats
by transitioning to qa subtraction and moves left.

4



8. We need the Turing Machine to finish the computation when the first
number has become 0. Therefore, when we are in state qa subtraction, if
we’ve reached the # symbol without seeing any 1s, we can transition to
qcleanup.

9. In qcleanup,we keep removing 1s to blanks until we reach #, at which point
we erase it and move to qaccept

Diagram

3 High-Level Example

First, recall from the definitions that:
A language is Turing-recognizable ⇔ there exists a TM that accepts strings

in that language and doesn’t accept strings that aren’t in that language.

• w ∈ L ⇒ M accepts w

• w /∈ L ⇒ M rejects or runs forever on w

A language is Turing-decidable ⇔ there exists a TM that accepts strings in
that language and rejects strings that aren’t in that language. A decider halts
on every input.

• w ∈ L ⇒ M accepts w

5



• w /∈ L ⇒ M rejects w

Remark. If M is a decider it will always halt, but if M is a recognizer it
may not halt.

3.1 Examples of Turing Decideable Languages

• ADFA = {⟨D,w⟩|D is a DFA and D accepts w}

• ANFA = {⟨N,w⟩|N is an NFA and N accepts w}

• EDFA = {⟨D⟩|D is a DFA and L(D) = ∅}

• EQDFA = {⟨D1, D2⟩|D1 and D2 are DFAs and L(D1) = L(D2)}

4 Closure Properties of Turing Recognizeable
and Decidable Languages

Theorem 1 (Closure Properties of Decidable Languages). Decidable
languages are closed under the following:

• union

• intersection

• concatenation

• complement

• Kleene star

Proof. For union: Suppose M1 and M2 are deciders. We will create M to
decide their union as follows:

M on input x:

1. Run M1 on x. If M1 accepts, accept.

2. Run M2 on x. If M2 accepts, accept.

3. Reject.

Observe that M will always halt (either reach an accept state or reject state,
not run forever). This is because step 1 will always halt (since M1 is a decider)
and step 2 will always halt (since M2 is a decider). Hence, M is also a decider.
Moreover, M accepts x ⇔ M1 accepts x or M2 accepts x ⇔ x ∈ L1 ∪ L2 (since
M1 is a decider for L1 and M2 is a decider for L2).

For concatenation: Suppose M1 and M2 are deciders. Let L1 and L2 be
their respective languages. We will create M to decide their concatenation as
follows:

M on input x:

6



1. For every way to split x into x = yz:

(a) Run M1 on input y.

(b) Run M2 on input z.

(c) If both M1 and M2 accept, let M accept.

2. Reject.

(Proof that this is a decider for concatenation left as an exercise).
Note: a different way to prove closure under concatenation is to construct a

non-deterministic TM, which starts by non-deterministically splitting x into y
and z. Complement was covered in class and intersection is left as an exercise
for the reader.

Theorem 2 (Closure Properties of Recognizable Languages). Rec-
ognizable languages are closed under the following:

• union

• intersection

• concatenation

• Kleene star

In particular, we note that recognizable languages are NOT closed under
the following:

• complement (will be shown later in the class)

Proof. For union: Suppose M1 and M2 are TMs, but not necessarily de-
ciders. What happens when we attempt to repeat the proof above?

M on input x:

1. Run M1 on x.

2. Run M2 on x.

3. If either M1 or M2 accepts, let M accept, else reject.

A problem occurs if M1 runs forever on x. Then, even if M2 accepts x (and
hence, M should accept x), we never get to that point because we’re running
forever with M1. One solution to this is using an NTM (non-deterministic
Turing machine) N , which allows us to run both M1 and M2 simultaneously on
two different branches.

N on input x:

1. Non-deterministically choose either M1 or M2.

2. Run the chosen TM Mi on x. If it accepts, accept.

7



Recall that with an NTM, an input x is in the language if any branch of
the computation tree accepts (just like an NFA). Thus, the machine N defined
above will accept if and only if either M1 or M2 accepts, which happens if and
only if x ∈ L1 or x ∈ L2, which is if and only if x ∈ L1 ∪ L2, as we wanted.

An alternative solution using a deterministic TM M can also be designed.
We can’t run M1 first then M2 (or vice versa) because there’s a chance one
machine runs forever on an input x, which prevents us from attempting to run
the other machine. However, to circumvent this, we can run the two machines
in parallel using a two-tape machine (simulate M1 using one tape, and simulate
M2 using the other tape).

5 More Practice Problems

5.1 Problem 1

Consider the input-output Turing Machine M = (Q,Σ,Γ, δ, q0, qhalt) where Q =
{q0, q1, qhalt}, Σ = {0, 1}, Γ = {0, 1,⊔}, and δ is given by:

δ(q0, 0) = (q0, 0, R),

δ(q0, 1) = (q0, 1, R),

δ(q0,⊔) = (q1,⊔, L),
δ(q1, 0) = (qhalt, 1, R),

δ(q1, 1) = (q1, 0, L),

δ(q1,⊔) = (qhalt,⊔, L).

(a) Provide the complete sequence of configurations of M when run on input
100. What is the output of M on this input?

(b) What is the output of M on 10011? On input 11?
(c) What function is computed by M?

5.2 Problem 2

Let Σ = {#, a, b}. We aim to provide an implementation level description of an
input-output Turing Machine (TM) that computes the following function:

f(#⟨x⟩) =

{
#⟨x2 ⟩ if x is even,

#⟨3x+ 1⟩ otherwise.

where 〈x〉 stands for the binary representation of the number x.

5.3 Problem 3

Show that ECFG = {⟨G⟩|G is a CFG and L(G) = ∅} is decidable.

8



5.4 Problem 4

Let L = {⟨M,k⟩|M is a TM, k is a positive integer, and there exists an input to M that makes M
run for at least k steps}. Prove that L is decidable.

9


