COMS 3261 Handout 2B:

Finite Automata Practice Questions
Angel Tui and Jeannie Ben
Fall 2023

1 DFA Exercises

1. Determine which of $\varepsilon, 11,010,10,0101$ is accepted by this DFA.

$\varepsilon \quad$ Not accepted
11 Accepted
010
Not accepted
10 Not accepted
0101 Accepted
2. The DFA state diagram below is defined on the alphabet $\Sigma=\{a, b, c\}$. Write out its formal definition (as a 5 -tuple). When specifying the transidion function δ, draw a table.

90
$D=(Q, \Sigma, 8,90, F)$
$Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$
$\Sigma=\{a, b, c\}$
$8:$

$$
F=\{q,\}
$$

3. Draw a DFA that recognizes:
(a) All strings with the prefix 01.

The dead / I erect bad
state can ae omitted. In this graph, we just omitted it to avoid making the graph messy
(c) $L=\left\{w \in\{0,1\}^{*} \mid\right.$ the number of 1 's in w is not an integer multiple of 5$\}$.
$\star 0$ is an integer multiple of 5 !

2 NFA Exercises

1. Draw an NFA that recognizes:
(a) All strings that contain 101.

Bonus solution:

(b) $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ has exactly two 0 's or an even number of 1 's $\}$.

3 Miscellaneous Exercises Draw either a DFA or an NFFA.

1. Prove the following languages are regular:
(a) $L=\left\{0^{m} 1^{n} \mid m, n \geq 0\right.$, and $m+n$ is odd $\}$ Be careful about the order! ex. $0^{4} 1^{3}=0^{4} \cdot 1^{3}=0000111$

(b) $L=\left\{x \in\{0,1\}^{*} \mid x\right.$ contains a substring of two 1 's separated by an odd number of characters $\}$

Note that III is also accepted by L!

2. Convert this NFA to a DFA using subset construction:

NFA 8: | | 0 | 1 | ε |
| :--- | :--- | :--- | :--- |
| q_{0} | $\Gamma_{q_{2}}, q_{1}$ | q_{0} | |
| | q_{1} | | q_{2} |
| | q_{2} | | |

6

DEA $8:$ 0 q_{0} $\left[q_{0}, q_{1}\right\}$ $\left\{q_{0}, q_{1}\right]$ $\left\{q_{0}, q_{1}\right\}$ $\left\{q_{0}, q_{2}\right\}$$\|\left\{q_{0}, q_{2}\right\}$			
		$\left.q_{1}\right\}$	q_{0}

3. (a) What is the language recognized by this NFA?

The complement of ϕ is Σ^{*}.
Note: They are not complement
(b) What is the language recognized by this NFA? of each other.

q_{1} is accepting: $\{\varepsilon\}$
The complement of $\{\varepsilon\}$ is $\left\{w \in \Sigma^{*}| | w \mid \geqslant 1\right\}$.
4. Use state elimination method to convert this NFA into Regular Expression

2. Pick middle states (with fewer transitions)

States that goes into 93 states reached from 93

