Computer Science Theory, Test 2 Review Problems
 Prof. Toniann Pitassi

1. Answer True or False for each statement. No justification is needed.

T(a) $n=O\left(n^{2}\right)$
F (b) $n \log n=O(n)$
F (c) $n^{n}=O\left(2^{n}\right)$
T (d) Let A be mapping reducible to B. If B is decidable then A must be decidable.
F (e) Let A be mapping reducible to B. If A is decidable then B must be decidable.
\mathcal{F} (f) If the complement of a language L is not recognizable then both L and $\neg L$ are not recognizable.

F (h) If B is NP-complete and $A \subseteq B$ and A is in NP then A is NP-complete.
2. Let Double-CLIQUE denote the language consisting of all pairs (G, k) such that G is an undirected graph containing two disjoint cliques each of size k. Prove that DoubleCLIQUE is NP-complete.
3. Prove that the following set is countable.

$$
S=\{(i, j) \mid i \geq 0 \text { and } j>i\}
$$

4. Prove that the following set is countable.

$$
S=\left\{L \subseteq\{0,1\}^{*} \mid \text { the number of strings in } L \text { is finite }\right\}
$$

5. Prove that NP is closed under union. That is, for every $L_{1}, L_{2} \in \mathrm{NP}, L_{1} \cup L_{2}$ is also in NP.
6. Prove that NP is closed under concatenation.
7. Let L be the language consisting of all pairs $<M>$ such that M encodes a Turing machine and M accepts at least two inputs.
(a) Prove that L is recognizable.
(b) Prove that L is not decidable.
8. Recall that 3SAT is the set of all 3-CNF formulas ϕ such that ϕ is satisfiable. Let Search-3SAT be the following search problem: Given a 3CNF formula ϕ, output a satisfying assignment for ϕ if one exists, and otherwise output " ϕ is unsatisfiable". Prove that if 3SAT $\in P$, then Search-3SAT can be solved in polynomial-time by a deterministic TM.
9. Double-Clique
(a) It is in NP.

The verifier on input $\left((g, k),\left(v_{1}, v_{2}\right)\right)$
checks that v_{1}, v_{2} are disjoint subsets of the vertices of g and each have size k, and that g contains a clique on V_{1} and on v_{2}.
(b) Double-cligue is NP-hand We gie a polytime mop reduction from clique to souble-Chige
On input (g, k) to cheque construct g^{\prime} which convions 2 copies of g. Let $f(g, k) \rightarrow\left(g^{\prime}, k\right)$.
This moping is politime comparable and g^{\prime} consdins $\geqslant 2$ disjant k-cliques it t g conicuins ≥ 1-clique
$f:$

$g^{\prime \prime}$
3. $S=\{(i, j) \mid i \geqslant 0, j>i\}$ is countable

For all $(i, j) \in S$, Let $f(i, j) \rightarrow 2^{i} \cdot 3^{j}$
This moping is one -to one from S to N and therefore S is countable
4. $S=\left\{L \leq\{0,1\}^{*} \mid L\right.$ has finite size $\}$ is countable.

To see this is countable we will give an enumeration 9 all clements of S (using dovetailing) Let x_{1}, x_{2}. be an enumeration of $\{0,1\}^{x}$.

For $i=1,2, \ldots$.
$\left[\begin{array}{l}\text { For } j=1, \ldots, i \\ \quad \text { Enumerate all subsets of }\left\{x_{1} \ldots x_{i}\right\} \text { of size } j\end{array}\right.$

For any $L \in S$, Let $X_{i *}$ be the Largest element in L (according ob our ordenng $x_{1}<x_{2}<\ldots$)
and say $\angle L=k$. Then in the above loop, when $i=l^{*}$ and $j=K$, we will oufart L.
5. NP closed under union.

Let $L_{1}, L_{2} \in N P$.
We want os show: $L_{1} U L_{2} \in N P$.
Let V, be a polite ventien for L_{1}, V_{2} for L_{z}.
Our Ventier V for $L_{1} \cup L_{2}$:
On input (w, c) :
View $c=c_{1}, c_{2}$.
$\operatorname{Run} V_{1}\left(w, c_{1}\right)$
$\operatorname{Run} V_{2}\left(w, c_{2}\right)$
accept iff at least one of V_{1}, V_{2} accepts.
6. NP closed under concatenation:

Let $L_{1}, L_{2} \in N P$. We want to show

$$
L=\left\{w \mid w=w_{1} w_{2}, w_{1} \in L_{1}, w_{2} \in L_{2}\right\} \in N P
$$

Let M_{1} be a politirie NTM for L_{1}, M_{2} for L_{2}.
Nondet polptime TM, M, for L:
On input w :
Use Nondeterminism to guess a partition of $\omega=w_{1} w_{2}$
RUN M_{1} on w_{1}
Run M_{2} on w_{2}
accept iff both accept
7. Let $L=\{\langle M\rangle \mid M$ accepts at least 2 inputs $\}$ (a) Prove L is re.

Let x_{1}, x_{2}, \ldots be an enumeration o all inputs in Σ^{*}

Description of ce. alg for L on input $\langle M\rangle$:
For $t=1,2,3, \ldots$
$\left[\begin{array}{c}\text { Simulate } M \text { on the first } t \text { inputs } \\ \left(x_{1,}, x_{t}\right) \text { for } t \text { steps each. }\end{array}\right.$
If M accepts at least 2 of these inputs, halt and accept.
Otherwise Loop again
(b) show L is not recursive.

We will give a mapping eduction from HALT $\rightarrow L$ on input (M, X), Let $f((M, x)) \rightarrow\langle M\rangle$ where M^{\prime} is defined as follows.
M^{\prime} on input w :
$\left[\begin{array}{l}\text { Ignore input } w \text { and simulate } M \text { on } x \\ \text { Halt and accept inf } M \text { halts on } x\end{array}\right.$

Correctress :
(1) $(M, x) \in$ Natt $\Rightarrow f((M, x))=\left\langle M^{\prime}\right\rangle \in L:$

If M nalts on x, then $\mathscr{L}\left(M^{\prime}\right)$ is all string, So $M^{\prime} \in L$
(2) $(M, x) \&+A L T \Rightarrow f((M, x))=M \dot{\angle}$:

If M does not hatt on x, then $\mathcal{L}\left(M^{\prime}\right)=\varnothing$ so $M^{\prime} \notin L$
8. Search-3SAT: On input a JCNE ©, output "UNSAT" if ϕ unsatisfiable; otherurie output a satisfying assignment.

We will show SEARCA-3SNT has a polytime alg if $3 S N T \in P$.
Akontum for search-3SAT (assuming 3SAT $\in P$):
On input Φ :

1. Run 3SAT alg on ϕ

If it rejects, halt + output "UNSSA"
2 Otherwise:
Let $\alpha=$ empty partial assignment
let $\phi=\phi$
$\begin{aligned} & \text { For } i=1,2,3, \ldots, n(n=\# \text { vars in } \phi) \\ & {\left[\begin{array}{cc}\text { Call } 3 \text { SAT on } \phi_{x_{i=1}} & \binom{\left.\phi\right|_{x=1} \text { is } \phi \text { simplified }}{\text { by setting } x_{i}=1}\end{array}\right.}\end{aligned}$
If it accepts:
Let $\alpha=\alpha \cup\left\{x_{i}=1\right\}, \phi=\left.\phi\right|_{\alpha}$
Else (it rejects):
Let $\alpha=\alpha \cup\left\{x_{i}=0\right\}, \phi=\left.\phi\right|_{\alpha}$
\rightarrow algonthm has n iterations, each loop takes police so oral nendime is poly in n
\rightarrow correctness: Follows since at eng step, we are guaranteed at each iteration that some satisfying assignment exists that extends the current partial cessynment α

