Computer Science Theory, Test 2 Review Problems Prof. Toniann Pitassi

1. Answer True or False for each statement. No justification is needed.

(a)
$$n = O(n^2)$$

(b)
$$n \log n = O(n)$$

- $\vdash (c) n^n = O(2^n)$
- \neg (d) Let A be mapping reducible to B. If B is decidable then A must be decidable.
- \neq (e) Let A be mapping reducible to B. If A is decidable then B must be decidable.
- $\not\models$ (f) If the complement of a language L is not recognizable then both L and $\neg L$ are not recognizable.
- \digamma (g) If A is NP-complete, $A \subseteq B$, and B is in NP then B is NP-complete.
- (h) If B is NP-complete and $A \subseteq B$ and A is in NP then A is NP-complete.
- 2. Let Double-CLIQUE denote the language consisting of all pairs (G, k) such that G is an undirected graph containing two disjoint cliques each of size k. Prove that Double-CLIQUE is NP-complete.
- 3. Prove that the following set is countable.

$$S = \{(i, j) \mid i \ge 0 \text{ and } j > i\}$$

4. Prove that the following set is accountable.

 $S = \{L \subseteq \{0,1\}^* | \text{the number of strings in } L \text{ is finite} \}$

- 5. Prove that NP is closed under union. That is, for every $L_1, L_2 \in NP$, $L_1 \cup L_2$ is also in NP.
- 6. Prove that NP is closed under concatenation.
- 7. Let L be the language consisting of all pairs $\langle M \rangle$ such that M encodes a Turing machine and M accepts at least two inputs.
 - (a) Prove that L is recognizable.
 - (b) Prove that L is not decidable.
- 8. Recall that 3SAT is the set of all 3-CNF formulas ϕ such that ϕ is satisfiable. Let Search-3SAT be the following *search* problem: Given a 3CNF formula ϕ , output a satisfying assignment for ϕ if one exists, and otherwise output " ϕ is unsatisfiable". Prove that if 3SAT \in P, then Search-3SAT can be solved in polynomial-time by a deterministic TM.

- 2. Double-Clique
 - (a) It is in NP. The verifier on input $((g,k), (V_1, V_2))$ checks that V_1, V_2 are disjoint subcets of the vertices of g and each have size k, and that g contains a clique on V_1 and on V_2 .

For
$$i = 1, 2, ..., i$$

For $j = 1, ..., i$
Enumerade all subsets $g_{X_1} - X_1^3$ of size j

For any LES, Let
$$X_{ik}$$
 be the largest element in L
(according to our ordering $X_1 < X_2 < ...$)
and say $|L| = K$. Then in the above loop,
when $i = k^{*}$ and $j = k$, we will output L.

5. NP closed under union.

Let
$$L_{1,3}L_{2} \in NP$$
.
We want to show: $L_{1} \cup L_{2} \in NP$.
Let V_{1} be a polytime vention for L_{1} , V_{2} for L_{2} .
Our Vention V for $L_{1} \cup L_{2}$:
On input (W, C) :
View $C = C_{1,3}C_{2}$.
Run $V_{1}(W, C_{1})$
Run $V_{2}(W, C_{2})$
 α_{ccept} iff at least one of $V_{1,3}V_{2}$ accepts.

(b) show L is not recursive. We will give a mapping reduction from HALT \rightarrow L. on input (M, x), Let $f((M, x)) \rightarrow \langle M \rangle$ where M' is defined as follows.

Correctness :

 (M, x) ∈ Hatt ⇒ f((M, x)) = <M > ∈ L: If M haits on x, then Z(M') is all string, so M'∈ L
 (M, x) ∈ HALT ⇒ f((M, x)) = M € L: IF M does not halt on x, then Z(M') = p

SO M'EL

8. Search-35AT : On input a JCNT
$$\phi$$
, output "UNSAT"
If ϕ unsatisfield; otherwhie output a
satisfying assignment.
We will show SEARch-25AT has a polytime alg if 2SATEP.
Algorithm for Security-25AT (assuming 3SATEP):
On input ϕ :
I. Run 3SAT alg on ϕ
If it rejects, halt + output "UNSAT"
2. Otherwise :
Let $d = empty partial assignment$
Let $d = d \cup \{x_{i=1}, \phi = \phi|_{x}$
If it accepts:
Let $d = d \cup \{x_{i=1}\}, \phi = \phi|_{x}$
Else (it rejects):
Let $d = d \cup \{x_{i=2}\}, \phi = \phi|_{x}$

-> algorithm has a iterations, each loop takes -> polytime so served rundime is poly in a -> correctness: follows since at every step we are guaranteed at each iteration that some sodisfying assignment exists that extends the current partial cessionment of