
CS Theory Fall 2022 Handout 6b:
Context Free Languages

with SOLUTIONS

Alice Chen & Leonidas Pappajohn
yc3877@columbia.edu & lgp2116@columbia.edu

Credit to Fall 2020 TA: Bryce Monier
bjm2190@columbia.edu

October 20, 2022

1 CFG/CFL Overview

1.1 Key terms / facts

(a) A context-free grammar (CFG) is represented as a 4-tuple (V,Σ, R, S),
where

• V is a set of variables or nonterminals

• Σ is a set of alphabet symbols or terminals

• R is a set of rules of the form A → α, where A ∈ V and α ∈
(V ∪ Σ)∗

• S ∈ V is the designated start variable.

(b) Let G = (V,Σ, R, S) be a grammar. Let αAβ be a string of variables
and alphabet symbols, or α, β ∈ (V ∪Σ)∗ and A ∈ V . If there is a rule
in R of the form A → γ, where γ ∈ (V ∪ Σ)∗, we write

αAβ ==⇒ αγβ

1

and say αAβ yields αγβ. If there is a finite sequence of wi so that

w ==⇒ w1 ==⇒ · · · ==⇒ wn ==⇒ z

we write w
∗

==⇒ z and say w derives z.

(c) The language generated by a CFG G = (V,Σ, R, S) is defined as

L(G) = {w ∈ Σ∗ | S ∗
==⇒ w}

If for a language L there exists a CFG G satisfying L(G) = G, we say
L is a context-free language (CFL).

(d) Fact: the set of regular languages is a proper subset of the set of
context-free languages. In class, we saw one proof that regular lan-
guages are context-free, by transforming regular expressions to equiva-
lent CFGs. A different proof follows from transforming DFAs to CFGs
– we will show a proof below. A third proof follows from transforming
NFAs to PDAs (which is an immediate transformation, as NFAs can
be viewed as a special case of PDAs) – we will also mention this below.
On the other hand, there are non-regular, context-free languages, such
as {aibi : ∀i ≥ 0}. Thus, the regular languages are a proper subset of
CFL’s.

(e) A CFG (Q,Σ, V, R) is right-linear if every rule in R is of the form
A → ϵ or A → aB where A,B ∈ V, a ∈ Σ. We stated the theorem
that a language is regular if and only if it is generated by a right-linear
CFG. Below, we will prove one direction of this theorem (we will prove
that every regular language has a corresponding right-linear CFG).

(f) We have a leftmost derivation if we replace the leftmost variable with
one of its production bodies in every derivation step. For a given gram-
marG and a string w ∈ L(G), each leftmost derivation of w corresponds
to a unique parse tree. Similarly, each parse tree for w corresponds to
a unique leftmost derivation for w.

(g) A CFG is ambiguous if we can find a string w in Σ∗ having two different
parse trees with S as root that both generate w. This also means
that the string w has two distinct leftmost derivations. A CFG is
unambiguous otherwise.

2

(h) A CFL is inherently ambiguous if all of its grammars are ambiguous.
In other words, no matter how you formulate a grammar for the lan-
guage, there will always be some string that has two different leftmost
derivations.

(i) Remember DFA’s and NFA’s? Well, CFG’s come with their own kinds
of automata called pushdown automata (PDA). We define these further
down. Simply put, they are NFA’s associated with a stack. A lan-
guage is context free if and only if there exists a PDA which
recognizes it.

(j) Remember the pumping lemma for natural languages? Well, CFL’s
have their own pumping lemma, often called the tandem pumping
lemma. The lemma states that if L is a CFL, L has some associ-
ated pumping length p such that ∀w ∈ L |w| ≥ p, ∃u, v, x, y, z

i) w = uvxyz

ii) |vxy| ≤ p

iii) |vy| > 0

iv) ∀i = 0, 1, 2, . . . uvixyiz ∈ L

To prove a language is not a CFL, one might show that there exists a
string w such that no such parsing exists.

Beware: As is the case with regular languages, it is possible for a
language to ’pass’ the tandem pumping lemma but not be context-
free.

1.2 PDA Definitions

(a) A pushdown automaton (PDA) is similar to a non-deterministic finite
automaton, except for an additional stack. It is represented as a 6-tuple
(Q,Σ,Γ, δ, q0, F)

• Q is the set of states,

• Σ is the input alphabet (and Σϵ = Σ ∪ {ϵ}),
• Γ is the stack alphabet (and Γϵ = Γ ∪ {ϵ}),
• δ : Q× Σϵ × Γϵ → P (Q× Γϵ) is the transition function

3

• q0 ∈ Q is the start state

• F ⊆ Q is the set of accept states

(b) A pushdown automaton M = (Q,Σ,Γ, δ, q0, F) accepts input w if there
exists an accepting computation of M on w. In more detail, M accepts
w if w can be written as w = w1w1w2 . . . wm, where each wi ∈ Σϵ and
sequence of states r0, r1, . . . , rm ∈ Q and strings s0, s1, . . . , sm ∈ Γ∗ exist
that satisfy the following three conditions. The strings si represent the
sequence of stack contents that M has on the accepting branch of the
computation.

1. M starts out properly, in the start state and with and empty stack:
r0 = q0 and s0 = ϵ.

2. M moves properly according to the state, stack, and next input
symbol: For i = 0, . . . ,m − 1, we have (ri+1, b) ∈ δ(ri, wi+1, a),
where si = at and si+1 = bt for some a, b ∈ Γϵ and t ∈ Γ∗

3. An accept state occurs at the end: rm ∈ F

(c) A state diagram for a pushdown automaton can be drawn as shown
below. The transition is taken as read ”a” from input, pop ”b” from
stack, push ”c” to stack

q1 q2
a, b → c

Figure 1: Example diagram for pushdown automaton

(d) Fact: Pushdown automata are equivalent in power to context-free
grammars. A language L is context free if and only if there exists
a pushdown automaton that recognizes L.

(e) Note that this immediately gives yet another proof that every regular
language is context free. This is because for every regular language
there exists a NFA that recognizes it, therefore there exists a PDA
that recognizes it (the PDA can just ignore the stack / always pop ϵ
and push ϵ to stack, and otherwise do the same as the NFA in terms
of state transitions).

4

1.3 Closure properties

We saw in class some useful closure properties, corresponding to the regular
operations:

(a) If L1 and L2 are context-free, so is L1 ∪ L2

(b) If L1 and L2 are context-free, so is L1 ◦ L2

(c) If L is context-free, so is L∗.

In contrast, some of the closure properties of regular languages do not work
with context-free languages:

(a) If L1 and L2 are context-free, L1 ∩ L2 might not be.

(b) If L is context-free, L (which we use to denote the complement of L)
might not be.

Caution: with closure properties, we can only use what we prove. In
particular, for context-free L1 and L2, L1 ∩ L2 might be context free! But it
also might not be.

As a simple example, consider a CFL L (over the alphabet Σ) as well as
the regular language Σ∗ (which is also a CFL since every regular language
is a context free language). Consider, then, that L ∩ Σ∗ = L is once again
context-free.

Similarly, if any language L is regular, then L is also regular. But both
languages are also context-free.

Exercise 1: As a more interesting example, show that the complement of
L = {aibi : i ≥ 0} is context-free.

Solution: How can a string w fail to be in L?

• One possibility is w is not of the form a∗b∗.

• Another is w = aibj with i < j.

• Finally, could have w = aibj with i > j.

5

So L is the union of these three cases. Since CFLs are closed under union,
if we make a grammar that generates each case, we’ll be done.

For the first case, we wish to generate the language L1 = {w : w /∈ a∗b∗}.
This is the complement of a regular language, so must be context-free. The
grammar below works:

T −→ UbUaU

U −→ ϵ | aU | bU

For the second case, we wish to generate L2 = {aibj : i < j}. We use a
grammar similar to the one for {aibi}, but add a rule that allows us to add
extra b’s at the end:

B −→ b | aBb | Bb

The third case for L3 = {aibj : i > j} is very similar:

A −→ a | aAb | aA

So if we use the grammar from the union construction that combines
these rules, we will generate the desired language L:

S −→ T | B | A
T −→ UbUaU

U −→ ϵ | aU | bU
B −→ b | aBb | Bb

A −→ a | aAb | aA

We claim that the grammar generates L as desired. As we noted at the
beginning of the problem, w ∈ L if and only if w ∈ L1 ∪L2 ∪L3, and we use
the union construction, so if we justify that our grammars for L1, L2, and
L3 work, we are done.

6

For L1, we note that U generates all strings over {a, b}∗. So the lan-
guage generated by T corresponds to the language of the regular expression
(a ∪ b)∗b(a ∪ b)∗a(a ∪ b)∗. We can see that this is exactly the complement of
the language generated by the regular expression a∗b∗ as desired.

For L2, we see that at any point in a computation there is only a single
non-terminal B, and we can only generate a’s before this B and b’s after the
B. Since we also have the rule B → b, the final step in a derivation for a
string w ∈ L2 will be of the form

a∗Bb∗ ==⇒ a∗bb∗

so that w is of the form a∗b∗. Further, since each rule either keeps the number
of a’s and b’s equal, or adds one b and no a’s, we see a string derived from
the grammar must be of the form aibj with i < j.

On the other hand, for any string of the form w = aibj with i < j, we
can write w = anbnbk with n ≥ 0 and k > 0. We see that if we use the first
rule, B → aBb, n times we will get

B
∗

==⇒ anBbn

then applying the second rule B → Bb k−1 times, and the rule B → b once,
we will get

B
∗

==⇒ anBbn
∗

==⇒ anbkbn = w

The argument that we have the right grammar to generate L3 is very
similar. So we conclude our grammar indeed generates L. Note: this is not
a full formal proof (which would involve induction), but is a pretty thorough
justification.

Exercise 2: A further nice closure property is that if L1 is context-free and
L2 is regular, then L1 ∩ L2 is context-free. Can you prove it? (Hint: use
PDAs).

Solution: Since L1 is context free, there’s a PDA M1 = (Q1,Σ,Γ, δ1, q1, F1)
recognizing it. Since L2 is regular, there’s a NFA M2 = (Q2,Σ, δ2, q2, F2)
recognizing it.

We construct a PDA for L1 ∩ L2, by using a product construction for
the finite state part and transitions, keeping track of both M1 and M2 states
simultaneously, and using the stack in the same way that M1 uses its stack

7

(note that M2 does not use the stack). Thus, when in some state (r1, r2)
(corresponding to r1 in M1 and r2 in M2), reading a on the input and with
b on the stack: if M1 would switch from r1 to r′1, and would have popped b
and pushed c to stack, and if M2 would switch from r2 to r′2, our new PDA
would switch to (r′1, r

′
2), pop b and push c to stack.

Formally, the new PDA is M = (Q1 ×Q2,Σ,Γ, δ, (q1, q2), F1 ×F2), where
δ is defined as follows.

δ((r1, r2), a, b) =
⋃

(r′1,c)∈δ1(r1,a,b),r′2∈δ2(r2,a)

{((r′1, r′2), c)}

With this construction, we can argue that there exists a computation of
the PDA M on a string w that ends in state (r1, r2) if and only if there exists
a computation of M1 on w that ends in state r1 and a computation of M2 on
w that ends in state r2. Since the accepting states of M were defined to be
F1 × F2 (namely all the pairs (r1, r2) where r1 ∈ F1, r2 ∈ F2), it follows that
a string w has an accepting computation by M if and only if it has accepting
computations by both M1 and M2. Thus, M recognizes L1 ∩ L2.

Note: can you see where the above proof would fail if we were trying to
construct a PDA using two PDAs for two context free langauges?

1.4 CFG Example

Consider a CFG with the following rules. This grammar generates a subset
of English sentences. Here are what the variables stand for: NP = Noun
Phrase, VP = Verb Phrase, DT = Determiner, PP = Prepositional Phrase,
NN = Noun, VB = Verb, PREP = Preposition.

8

S −→ NP V P

NP −→ DT NN | NP PP

V P −→ V B NP | V P PP

PP −→ PREP NP

DT −→ the | a
NN −→ man | dog | telescope
V B −→ saw

PREP −→ with

We will demonstrate the ambiguity derived from prepositional phrase
attachment in English using the sentence the man saw a dog with a telescope.

Figure 2: PP attached to NP

S

NP

DT

the

NN

man

VP

VB

saw

NP

NP

DT

a

NN

dog

PP

PREP

with

NP

DT

a

NN

telescope

9

Astart B C

0

1

1

0

0

1

The corresponding grammar from the construction described above would
bet G = ({A,B,C}, {0, 1}, R,A) with production rules R given by:

A −→ 0A | 1B | ϵ
B −→ 0C | 1A
C −→ 0B | 1C

Justification: We claim that L(G) = L(M). First, suppose w ∈ L(G),
where w = w1w2 . . . wn with each wi ∈ Σ. If w ∈ L(G), there is a com-

putation such that Q0
∗

==⇒ w. Inspecting all of the rules we added to R,
we see there will always be at most a single non-terminal, and it will be the
rightmost character of the current string. Further, we see the last production
rule to generate w must be of the form Qi → ϵ for some Qi ∈ F . We can
only apply such a production once, at the last step of the derivation of w,
because this rule will result in a string with no nonterminals. Building a
string from the production rules will build from the beginning of w to the
end, adding a single character to the prefix at each step. In view of all of
these considerations, a derivation of w must look like:

Q0 ==⇒ w1Qi1 ==⇒ w1w2Qi2
∗

==⇒ w1 . . . wnQin ==⇒ w1 . . . wn = w

where each derivation is of the form Qik → wk+1Qik+1
. for k = 0, . . . , n− 1,

and Qin → ϵ for k = n. But because of how we defined R, this means
precisely that there is a computation on the DFA M given by

Q0
w1−−→ Qi1

w2−−→ Qi2
w3−−→ · · · wn−−→ Qin

with Qin ∈ F . This is an accepting computation of w on M , so we conclude
w ∈ L(M).

10

On the other hand, suppose w ∈ L(M). Then there exists a computation

Q0
w1−−→ Qi1

w2−−→ Qi2
w3−−→ · · · wn−−→ Qin

with Qin . But this means precisely that we can apply the rule corresponding
to each computation δ(Qik , wk+1) = Qik+1

to get a derivation in G:

Q0 ==⇒ w1Qi1 ==⇒ w1w2Qi2
∗

==⇒ w1 . . . wnQin ==⇒ w1 . . . wn = w

So that Q0
∗

==⇒ w, and w ∈ L(G). We conclude L(M) = L(G). Again, this
argument is not a completely formal proof, but should convince you that our
construction works.

We have shown that for every language L recognized by a DFA, there is
a grammar that produces L. In fact, the CFG we constructed is right-linear.
Thus, we’ve shown that any DFA can be transformed to an equivalent right-
linear CFG. We conclude regular languages ⊂ context-free languages.
Extra: The above construction shows that any DFA corresponds to a right-
linear grammar. On the other hand, given a right-linear grammar, we can
actually reverse the construction above to get an equivalent NFA.

2 Additional Problems

1. Consider the CFG G1 = (V,Σ, R, S) with V = {S}, Σ = {′(′,′)′}, start
variable S, and production rules R given by

S → SS | (S) | ϵ

What language does this grammar generate?

2. Consider the CFG G2 = (V,Σ, R, S) with V = {S}, Σ = {a, b, c}, start
variable S, and with production rules R given by

S → aS | aSbS | c

This grammar models if-then and if-then-else statements in program-
ming languages where a stands for if-condition-then, b for else, and
c for some other statement. Is the language generated by G2 regular?
Is G2 ambiguous?

11

3. Consider the CFG G3 = (V,Σ, R, S) with V = {S,B}, Σ = {a, b}, with
start variable S and production rules R given by

S → aBa

B → BB | b | ϵ
What language does this grammar generate?

4. For the alphabet Σ = {a, b, c, d}, define the language

L = {cw|w ∈ {a, b}∗, w = wR} ∪ {dw|w ∈ {a, b}∗}

Prove that L is context free.

3 Solutions to Additional Problems

Problem 1

Consider the CFG G1 = (V,Σ, R, S) with V = {S}, Σ = {′(′,′)′}, start
variable S, and production rules R given by

S → SS | (S) | ϵ

What language does this grammar generate?

Solution: This grammar generates language L containing all strings with
balanced parenthesis. We provide a full formal proof (not necessary on HW)
that L = L(G1) using induction:

(a) To show L(G) ⊆ L, we do induction on number of productions.
Base Case: G1 generates ϵ in 1 step.
Inductive Case: Let inductive hypothesis be that if w ∈ {(,)}∗ and
G generates w in fewer than n derivations, then w ∈ L. We consider
two cases for the first rule in the derivation:

• S → SS. S ⇒ SS ⇒∗ xS ⇒∗ xy. Since both x and y are
produced in fewer than n steps, they are in L by inductive hy-
pothesis. Since the concatenation of two strings with balanced
parentheses results in a string with balanced parentheses, we have
that w = xy ∈ L.

12

• S → (S). S ⇒ (S) ⇒∗ (x). Since x is produced in fewer than n
steps, it is in L by inductive hypothesis. And w = (x) ∈ L since
it also has balanced parenthesis.

(b) To show L ⊆ L(G), we induct on the length of w ∈ L.
Base Case: If |w| = 0, we have w = ϵ ∈ L. Then by the rule S → ϵ,
we have w ∈ L(G).
Inductive Case: Let inductive hypothesis be that if w ∈ L and |w| <
n, then w ∈ L(G). We consider a string with |w| = n in 2 cases:

• w = (x). By inductive hypothesis x is produced by G, so we can
use S ⇒ (S) ⇒∗ (x) to produce w.

• w = xy where x, y ∈ L and |x| < n and |y| < n, then by inductive
hypothesis x and y can both be produced by G, meaning x and y
both have balanced parenthesis. So we can use S ⇒ SS ⇒∗ xy to
produce w.

• w must have the one of the two forms above since if w cannot be
divided into w = xy with |x| < n and |y| < n, then the parentheses
are not balanced in every proper prefix of w, which means in every
proper prefix there are more (than) and w itself must start with
(and end with).

We can now conclude that L(G) = L since L(G) ⊆ L and L ⊆ L(G).

Problem 2

Consider the CFG G2 = (V,Σ, R, S) with V = {S}, Σ = {a, b, c}, start
variable S, and with production rules R given by

S → aS | aSbS | c

This grammar models if-then and if-then-else statements in programming
languages where a stands for if-condition-then, b for else, and c for some
other statement. Is the language generated by G2 regular? Is G2 ambiguous?

Solution: We note from looking at the grammar that a string in L(G2)
must have at most as many b’s as a’s in the string (this is because every
production rule that adds a b also adds an a to the string).

13

L(G2) is not regular. Assume towards contradiction that it was. Let
p be the pumping length for L(G2). Consider the string w = apc(bc)p. w ∈
L(G2), since it can be produced by applying the rule S → aSbS to the
leftmost S for p times, which results in apS(bS)p, and then applying S → c
for all the remaining S. We also have that |w| = 3p + 1 ≥ p. Consider
any decomposition of w into xyz satisfying the three criteria of the pumping
lemma for regular languages. Since y is non-empty and xy is of length at
most p, it must be that y = am for some 0 < m ≤ p. We choose i = 0.
But the string xz cannot be in L because it has more occurrences of b’s than
a’s and every string in L(G2) has at most as many b’s as a’s. We have thus
demonstrated a contradiction to our assumption that L(G2) is regular.

This grammar is ambiguous (which is similar to the ”if-then-else” ex-
ample given in class). Consider the string aacbc in L(G2), which has two
distinct leftmost derivations:
(1) S → aSbS → aaSbS → aacbS → aacbc
(2) S → aS → aaSbS → aacbS → aacbc
The grammar is therefore ambiguous. If we think about what kind of if-
then-else statement this string represents, we see it corresponds to ”if con-
dition then if condition then statement else statement”. The first derivation
matches the ”else” statement with the first ”if”, while the second derivation
matches the ”else” statement with the second ”if”. As parse trees:

(1) S

a
S

a
S

c

b
S

c

(2) S

a
S

a
S

c

b
S

c

Note: the language generated by this grammar is not inherently ambigu-
ous. In other words, there is a non-ambiguous CFG that generates the same
language. This is good, as it allows us to unambiguously parse if-then-else
statements in actual programming languages!

14

Problem 3

Consider the CFG G3 = (V,Σ, R, S) with V = {S,B}, Σ = {a, b}, with start
variable S and production rules R given by

S → aBa

B → BB | b | ϵ

What language does this grammar generate?

Solution: The grammar generates L(ab∗a). To see this, we note that from
the start variable we must use the production rule S → aBa. Then, we see
that B generates all strings of the form b∗: on one hand, the only terminal in
any rule involving B is a b, so it’s clear that the strings generated by B are a
subset of L(b∗). On the other hand, any string of this form is generated by B:
to get bn for n > 0 from B, we apply the first rule B → BB, n− 1 times to
get a string Bn, and then we apply the rule B → b for each variable. We can
also apply B → ϵ initially to get ϵ, so the strings generated by B are exactly
those generated by the regular expression b∗. We conclude L(G3) = L(ab∗a).

Extra: Building off of what we said about right-linear grammars in section
2, note that if we construct an NFA that recognizes L(G3) = L(ab∗a):

Sstart A B
a a

b

then we can easily follow the construction in the proof to create a right-linear
grammar G′

3 recognizing the same language. Let G′
3 = (V,Σ, R, S ′) with the

same V and Σ, and grammar rules

S ′ −→ aA

A −→ bA | aB
B −→ ϵ

15

Problem 4

For the alphabet Σ = a, b, c, d, define the language

L = {cw|w ∈ {a, b}∗, w = wR} ∪ {dw|w ∈ {a, b}∗}
Prove that L is context free.

Solution: We will construct a PDA for the language (another approach that
also works is to construct a CFG).

The following PDA recognizes L. It is the same as the PDA constructed
in class that accepts palindromes, with the addition of a transition function
in the beginning to check if the first character in the input string is a ”c” or a
”d”. If the first character is a ”c,” run the PDA that recognizes palindromes
over the alphabet {a, b}. If the first character is a ”d,” accept any other
sequence of a’s and b’s (if another c or d appear in the string, there is no
transition so the computation ”dies” and won’t accept).

q0start q1

q2

q3

q4

c, ϵ → $

a, ϵ → a
b, ϵ → b ϵ, ϵ,→ ϵ

a, ϵ → ϵ
b, ϵ → ϵ

a, a → ϵ
b, b → ϵ

ϵ, $ → ϵd, ϵ → ϵ

a, ϵ → ϵ
b, ϵ → ϵ

Figure 3: PDA that accepts L

4 Applications / Motivation

In this section, we will discuss the motivations behind understanding context-
free languages, and the applications of these understandings. This is not

16

required material, but you might find it interesting.

4.1 What does ”Context-Free” mean?

To start off, you might be wondering why this set of languages is called
”context-free” ... what is the ’context’ and what exactly makes these lan-
guages ’free’ of it? To put it simply, ’context’ refers to the symbols to the left
and right of a non-terminal symbol as one is deriving a string. For example,
if we have the CFG:

S → aBa

B → BB | b | ϵ
So, let’s say we are creating a string in the language of this CFG, and we cur-
rently have the string abBa. When looking at the non-terminal B, we don’t
care about the symbols to the left and right of B – they have no bearing
on how we will replace B. This is what makes the language ”context-free”...
when we see a non-terminal, the symbols around it do not dictate the possi-
ble ways in which we can replace it.

What would it look like if we did care about the context of non-terminals?
Well, that is what we call a context-sensitive language (CSL). In similar
fashion to context-free grammars, we can make context-sensitive grammars
(CSG). In a CSG, all rules are of the form:

αAβ → αγβ

where
A ∈ V

α, β ∈ (V ∪ Σ)∗

γ ∈ (V ∪ Σ) ◦ (V ∪ Σ)∗

In words, what this rule would mean is that we can replace A with γ when
we see the patterns (of non-terminals and terminals potentially) α to the left
of A and β to the right of A. (Additionally, we may have a rule S → ε to
allow production of ε, if S doesn’t appear on the righthandside of other rules).

We will not cover CSG’s in this course, but it turns out:

{L | L is a CFL} ⊊ {L | L is a CSL}

17

4.2 What are some applications of CFL’s / CFG’s

CFL’s are most prevalent in the fields of Linguistics and Natural Language
Processing (NLP). CFG’s are good models for many languages, such as En-
glish (consider the CFG from section 1.4). In this context, we can make our
non-terminals generally correspond to grammatical groups of words (nouns,
verbs) and our terminals correspond to specific words themselves. In NLP,
probabilistic context-free grammars (PCFG) are often used to express the
probability that a non-terminal follows a rule (for example, the probabil-
ity that the NOUN non-terminal turns into chicken). In this case, one
must make sure that the probabilities of all the rules originating from a non-
terminal add up to 1.

Interestingly, however, there are some languages which have structures that
cannot be captured by CFL’s.

For example, in Dutch, it is possible to have this kind of structure, which
loosely mirrors the non-context free language: {anbmcndm}:

Figure 4: Credit – Professor Daniel Bauer, NLP Fall 2022 Slides

18

