
CS Theory Fall 2022 Handout 6a:
Context Free Languages

Alice Chen & Leonidas Pappajohn
yc3877@columbia.edu & lgp2116@columbia.edu

Credit to Fall 2020 TA: Bryce Monier
bjm2190@columbia.edu

October 20, 2022

1 CFG/CFL Overview

1.1 Key terms / facts

(a) A context-free grammar (CFG) is represented as a 4-tuple (V,Σ, R, S),
where

• V is a set of variables or nonterminals

• Σ is a set of alphabet symbols or terminals

• R is a set of rules of the form A → α, where A ∈ V and α ∈
(V ∪ Σ)∗

• S ∈ V is the designated start variable.

(b) Let G = (V,Σ, R, S) be a grammar. Let αAβ be a string of variables
and alphabet symbols, or α, β ∈ (V ∪Σ)∗ and A ∈ V . If there is a rule
in R of the form A → γ, where γ ∈ (V ∪ Σ)∗, we write

αAβ ==⇒ αγβ

and say αAβ yields αγβ. If there is a finite sequence of wi so that

w ==⇒ w1 ==⇒ · · · ==⇒ wn ==⇒ z

1

we write w
∗

==⇒ z and say w derives z.

(c) The language generated by a CFG G = (V,Σ, R, S) is defined as

L(G) = {w ∈ Σ∗ | S ∗
==⇒ w}

If for a language L there exists a CFG G satisfying L(G) = G, we say
L is a context-free language (CFL).

(d) Fact: the set of regular languages is a proper subset of the set of
context-free languages. In class, we saw one proof that regular lan-
guages are context-free, by transforming regular expressions to equiva-
lent CFGs. A different proof follows from transforming DFAs to CFGs
– we will show a proof below. A third proof follows from transforming
NFAs to PDAs (which is an immediate transformation, as NFAs can
be viewed as a special case of PDAs) – we will also mention this below.
On the other hand, there are non-regular, context-free languages, such
as {aibi : ∀i ≥ 0}. Thus, the regular languages are a proper subset of
CFL’s.

(e) A CFG (Q,Σ, V, R) is right-linear if every rule in R is of the form
A → ϵ or A → aB where A,B ∈ V, a ∈ Σ. We stated the theorem
that a language is regular if and only if it is generated by a right-linear
CFG. Below, we will prove one direction of this theorem (we will prove
that every regular language has a corresponding right-linear CFG).

(f) We have a leftmost derivation if we replace the leftmost variable with
one of its production bodies in every derivation step. For a given gram-
marG and a string w ∈ L(G), each leftmost derivation of w corresponds
to a unique parse tree. Similarly, each parse tree for w corresponds to
a unique leftmost derivation for w.

(g) A CFG is ambiguous if we can find a string w in Σ∗ having two different
parse trees with S as root that both generate w. This also means
that the string w has two distinct leftmost derivations. A CFG is
unambiguous otherwise.

(h) A CFL is inherently ambiguous if all of its grammars are ambiguous.
In other words, no matter how you formulate a grammar for the lan-
guage, there will always be some string that has two different leftmost
derivations.

2

(i) Remember DFA’s and NFA’s? Well, CFG’s come with their own kinds
of automata called pushdown automata (PDA). We define these further
down. Simply put, they are NFA’s associated with a stack. A lan-
guage is context free if and only if there exists a PDA which
recognizes it.

(j) Remember the pumping lemma for natural languages? Well, CFL’s
have their own pumping lemma, often called the tandem pumping
lemma. The lemma states that if L is a CFL, L has some associ-
ated pumping length p such that ∀w ∈ L |w| ≥ p, ∃u, v, x, y, z

i) w = uvxyz

ii) |vxy| ≤ p

iii) |vy| > 0

iv) ∀i = 0, 1, 2, . . . uvixyiz ∈ L

To prove a language is not a CFL, one might show that there exists a
string w such that no such parsing exists.

Beware: As is the case with regular languages, it is possible for a
language to ’pass’ the tandem pumping lemma but not be context-
free.

1.2 PDA Definitions

(a) A pushdown automaton (PDA) is similar to a non-deterministic finite
automaton, except for an additional stack. It is represented as a 6-tuple
(Q,Σ,Γ, δ, q0, F)

• Q is the set of states,

• Σ is the input alphabet (and Σϵ = Σ ∪ {ϵ}),
• Γ is the stack alphabet (and Γϵ = Γ ∪ {ϵ}),
• δ : Q× Σϵ × Γϵ → P (Q× Γϵ) is the transition function

• q0 ∈ Q is the start state

• F ⊆ Q is the set of accept states

3

(b) A pushdown automaton M = (Q,Σ,Γ, δ, q0, F) accepts input w if there
exists an accepting computation of M on w. In more detail, M accepts
w if w can be written as w = w1w1w2 . . . wm, where each wi ∈ Σϵ and
sequence of states r0, r1, . . . , rm ∈ Q and strings s0, s1, . . . , sm ∈ Γ∗ exist
that satisfy the following three conditions. The strings si represent the
sequence of stack contents that M has on the accepting branch of the
computation.

1. M starts out properly, in the start state and with and empty stack:
r0 = q0 and s0 = ϵ.

2. M moves properly according to the state, stack, and next input
symbol: For i = 0, . . . ,m − 1, we have (ri+1, b) ∈ δ(ri, wi+1, a),
where si = at and si+1 = bt for some a, b ∈ Γϵ and t ∈ Γ∗

3. An accept state occurs at the end: rm ∈ F

(c) A state diagram for a pushdown automaton can be drawn as shown
below. The transition is taken as read ”a” from input, pop ”b” from
stack, push ”c” to stack

q1 q2
a, b → c

Figure 1: Example diagram for pushdown automaton

(d) Fact: Pushdown automata are equivalent in power to context-free
grammars. A language L is context free if and only if there exists
a pushdown automaton that recognizes L.

(e) Note that this immediately gives yet another proof that every regular
language is context free. This is because for every regular language
there exists a NFA that recognizes it, therefore there exists a PDA
that recognizes it (the PDA can just ignore the stack / always pop ϵ
and push ϵ to stack, and otherwise do the same as the NFA in terms
of state transitions).

1.3 Closure properties

We saw in class some useful closure properties, corresponding to the regular
operations:

4

(a) If L1 and L2 are context-free, so is L1 ∪ L2

(b) If L1 and L2 are context-free, so is L1 ◦ L2

(c) If L is context-free, so is L∗.

In contrast, some of the closure properties of regular languages do not work
with context-free languages:

(a) If L1 and L2 are context-free, L1 ∩ L2 might not be.

(b) If L is context-free, L (which we use to denote the complement of L)
might not be.

Caution: with closure properties, we can only use what we prove. In
particular, for context-free L1 and L2, L1 ∩ L2 might be context free! But it
also might not be.

As a simple example, consider a CFL L (over the alphabet Σ) as well as
the regular language Σ∗ (which is also a CFL since every regular language
is a context free language). Consider, then, that L ∩ Σ∗ = L is once again
context-free.

Similarly, if any language L is regular, then L is also regular. But both
languages are also context-free.

Exercise 1: As a more interesting example, show that the complement of
L = {aibi : i ≥ 0} is context-free.

Exercise 2: A further nice closure property is that if L1 is context-free and
L2 is regular, then L1 ∩ L2 is context-free. Can you prove it? (Hint: use
PDAs).

1.4 CFG Example

Consider a CFG with the following rules. This grammar generates a subset
of English sentences. Here are what the variables stand for: NP = Noun
Phrase, VP = Verb Phrase, DT = Determiner, PP = Prepositional Phrase,

5

NN = Noun, VB = Verb, PREP = Preposition.

S −→ NP V P

NP −→ DT NN | NP PP

V P −→ V B NP | V P PP

PP −→ PREP NP

DT −→ the | a
NN −→ man | dog | telescope
V B −→ saw

PREP −→ with

We will demonstrate the ambiguity derived from prepositional phrase
attachment in English using the sentence the man saw a dog with a telescope.

Figure 2: PP attached to NP

S

NP

DT

the

NN

man

VP

VB

saw

NP

NP

DT

a

NN

dog

PP

PREP

with

NP

DT

a

NN

telescope

6

Figure 3: PP attached to VP

S

NP

DT

the

NN

man

VP

VP

VB

saw

NP

DT

a

NN

dog

PP

PREP

with

NP

DT

a

NN

telescope

Example 2. Construct a PDA M1 that recognizes L = {0n1n|n ≥ 0}

2 Regular Languages ⊊ Context Free Lan-

guages

Recall that in class, we showed a way to convert any regular expression into
an equivalent CFG. This proved that regular languages are a subset of context
free languages. As mentioned above (and mentioned in class), a different way
to prove it is to note that NFAs can be viewed as a special case of PDAs, so
if a language is regular, it has an NFA, and therefore it also has a PDA and
is context free. Next, we will present an alternative proof, this time based
on DFAs.

7

Note: We prove this by proving one direction of a theorem mentioned in
class: that every regular language is generated by a right linear grammar.
We give this proof in order to provide students with extra practice. The
proof is not part of the required material, although the statement is.

Theorem. If a language L over the alphabet Σ is regular, then L is context-
free.

Proof. Since L is regular, we can construct a DFA M = (Q,Σ, δ, Q0, F)
such that L(M) = L. Note we will use upper-case letters Qi to represent
states in Q (corresponding to nonterminals in the grammar). So Q0 ∈ Q
for example is the designated start state. We will construct a CFG G =
(V,Σ, R, S) = (Q,Σ, R,Q0) satisfying L(G) = L. Conceptually, we simulate
the computation on the DFA using a CFG.

The set of nonterminal for G will be identical to the set of state for the
DFA, V = Q. The starting nonterminal will be the start state of M , S = Q0.
Then we define R by the rule below:

∀(Qi, a) ∈ Q× Σ, if δ(Qi, a) = Qj, we add a rule Qi −→ aQj to R

and further, we add a rule to R

∀Qi ∈ F, add a rule Qi −→ ϵ to R

Example: We will give a simple example of a DFA and the corresponding
grammar. Take the DFA below, which recognizes binary numbers that are
divisible by 3:

Astart B C

0

1

1

0

0

1

The corresponding grammar from the construction described above would

8

bet G = ({A,B,C}, {0, 1}, R,A) with production rules R given by:

A −→ 0A | 1B | ϵ
B −→ 0C | 1A
C −→ 0B | 1C

Justification: We claim that L(G) = L(M). First, suppose w ∈ L(G),
where w = w1w2 . . . wn with each wi ∈ Σ. If w ∈ L(G), there is a com-

putation such that Q0
∗

==⇒ w. Inspecting all of the rules we added to R,
we see there will always be at most a single non-terminal, and it will be the
rightmost character of the current string. Further, we see the last production
rule to generate w must be of the form Qi → ϵ for some Qi ∈ F . We can
only apply such a production once, at the last step of the derivation of w,
because this rule will result in a string with no nonterminals. Building a
string from the production rules will build from the beginning of w to the
end, adding a single character to the prefix at each step. In view of all of
these considerations, a derivation of w must look like:

Q0 ==⇒ w1Qi1 ==⇒ w1w2Qi2
∗

==⇒ w1 . . . wnQin ==⇒ w1 . . . wn = w

where each derivation is of the form Qik → wk+1Qik+1
. for k = 0, . . . , n− 1,

and Qin → ϵ for k = n. But because of how we defined R, this means
precisely that there is a computation on the DFA M given by

Q0
w1−−→ Qi1

w2−−→ Qi2
w3−−→ · · · wn−−→ Qin

with Qin ∈ F . This is an accepting computation of w on M , so we conclude
w ∈ L(M).

On the other hand, suppose w ∈ L(M). Then there exists a computation

Q0
w1−−→ Qi1

w2−−→ Qi2
w3−−→ · · · wn−−→ Qin

with Qin . But this means precisely that we can apply the rule corresponding
to each computation δ(Qik , wk+1) = Qik+1

to get a derivation in G:

Q0 ==⇒ w1Qi1 ==⇒ w1w2Qi2
∗

==⇒ w1 . . . wnQin ==⇒ w1 . . . wn = w

9

So that Q0
∗

==⇒ w, and w ∈ L(G). We conclude L(M) = L(G). Again, this
argument is not a completely formal proof, but should convince you that our
construction works.

We have shown that for every language L recognized by a DFA, there is
a grammar that produces L. In fact, the CFG we constructed is right-linear.
Thus, we’ve shown that any DFA can be transformed to an equivalent right-
linear CFG. We conclude regular languages ⊂ context-free languages.

Extra: The above construction shows that any DFA corresponds to a right-
linear grammar. On the other hand, given a right-linear grammar, we can
actually reverse the construction above to get an equivalent NFA.

3 Additional Problems

1. Consider the CFG G1 = (V,Σ, R, S) with V = {S}, Σ = {′(′,′)′}, start
variable S, and production rules R given by

S → SS | (S) | ϵ

What language does this grammar generate?

2. Consider the CFG G2 = (V,Σ, R, S) with V = {S}, Σ = {a, b, c}, start
variable S, and with production rules R given by

S → aS | aSbS | c

This grammar models if-then and if-then-else statements in program-
ming languages where a stands for if-condition-then, b for else, and
c for some other statement. Is the language generated by G2 regular?
Is G2 ambiguous?

3. Consider the CFG G3 = (V,Σ, R, S) with V = {S,B}, Σ = {a, b}, with
start variable S and production rules R given by

S → aBa

B → BB | b | ϵ
What language does this grammar generate?

10

4. For the alphabet Σ = {a, b, c, d}, define the language

L = {cw|w ∈ {a, b}∗, w = wR} ∪ {dw|w ∈ {a, b}∗}

Prove that L is context free.

4 Applications / Motivation

In this section, we will discuss the motivations behind understanding context-
free languages, and the applications of these understandings. This is not
required material, but you might find it interesting.

4.1 What does ”Context-Free” mean?

To start off, you might be wondering why this set of languages is called
”context-free” ... what is the ’context’ and what exactly makes these lan-
guages ’free’ of it? To put it simply, ’context’ refers to the symbols to the left
and right of a non-terminal symbol as one is deriving a string. For example,
if we have the CFG:

S → aBa

B → BB | b | ϵ

So, let’s say we are creating a string in the language of this CFG, and we cur-
rently have the string abBa. When looking at the non-terminal B, we don’t
care about the symbols to the left and right of B – they have no bearing
on how we will replace B. This is what makes the language ”context-free”...
when we see a non-terminal, the symbols around it do not dictate the possi-
ble ways in which we can replace it.

What would it look like if we did care about the context of non-terminals?
Well, that is what we call a context-sensitive language (CSL). In similar
fashion to context-free grammars, we can make context-sensitive grammars
(CSG). In a CSG, all rules are of the form:

αAβ → αγβ

where
A ∈ V

11

α, β ∈ (V ∪ Σ)∗

γ ∈ (V ∪ Σ) ◦ (V ∪ Σ)∗

In words, what this rule would mean is that we can replace A with γ when
we see the patterns (of non-terminals and terminals potentially) α to the left
of A and β to the right of A. (Additionally, we may have a rule S → ε to
allow production of ε, if S doesn’t appear on the righthandside of other rules).

We will not cover CSG’s in this course, but it turns out:

{L | L is a CFL} ⊊ {L | L is a CSL}

4.2 What are some applications of CFL’s / CFG’s

CFL’s are most prevalent in the fields of Linguistics and Natural Language
Processing (NLP). CFG’s are good models for many languages, such as En-
glish (consider the CFG from section 1.4). In this context, we can make our
non-terminals generally correspond to grammatical groups of words (nouns,
verbs) and our terminals correspond to specific words themselves. In NLP,
probabilistic context-free grammars (PCFG) are often used to express the
probability that a non-terminal follows a rule (for example, the probabil-
ity that the NOUN non-terminal turns into chicken). In this case, one
must make sure that the probabilities of all the rules originating from a non-
terminal add up to 1.

Interestingly, however, there are some languages which have structures that
cannot be captured by CFL’s.

For example, in Dutch, it is possible to have this kind of structure, which
loosely mirrors the non-context free language: {anbmcndm}:

12

Figure 4: Credit – Professor Daniel Bauer, NLP Fall 2022 Slides

13

