Enhancing Gradient-based Attacks With Symbolic Intervals Shiqi Wang, Yizheng Chen, Ahmed Abdou, Suman Jana

GRADIENT-BASED ATTACKS

- Adversarial examples are defined in small Lp-norm bounded range
- First-order adversary: Gradient ascent the loss

LIMITATIONS

- NN is highly non-convex and non-linear
 => Easily get stuck at local optima
- Attack performance can be improved with multiple starting points.

SOUND BOUND PROPAGATION

- Relax nonlinearity with convex function
- Over-approximate the output range
- Provide a broader view within surrounding area

OVERESTIMATION ERROR

(1) Cannot converge to optima if only rely on interval gradient
=> Using interval gradient ascent to locate interesting area and
then use regular gradient ascent to converge

BROADER VIEW IN INTERVAL ATTACK

- It's likely to guide towards the worst-case behavior within surrounding area
- Higher chance to avoid local optima

INTERVAL GRADIENT

- The slope of the two parallel symbolic intervals
- A generic framework that can adapt other sound propa-

gation methods (e.g., worst-case or average gradients)

(2) The error is proportional to the input range

=> Dynamically balance the range used for each step

Network	# Hidden units	# Parameters	ACC (%)	Attack success rate (%)			
				PGD	CW	Interval Attack	Interval Attack Gain
MNIST_FC1	1,024	668,672	98.1	39.2	42.2	56.2	+17 (43%)
MNIST_FC2	10,240	18,403,328	98.8	34.4	32.2	44.4	+10.0 (38%)
MNIST_Conv	38,656	3,274,634	98.4	7.2	7.3	11.6*	+4.4 (61%)

* Interval attack achieves the best attack success rate in MadryLab MNIST Challenge (Madry et al., 2018b).

EXPERIMENTAL RESULTS

100,000 might still not enough to locate all adversaraial
 The strongest attack so far on MadryLab MNIST challenge
 examples=>Stronger attacks are still needed before
 On average 47% relatively more than PGD attack
 model is verified

CODE AVAILABLE AT:

https://github.com/tcwangshiqi-columbia/Interval-Attack