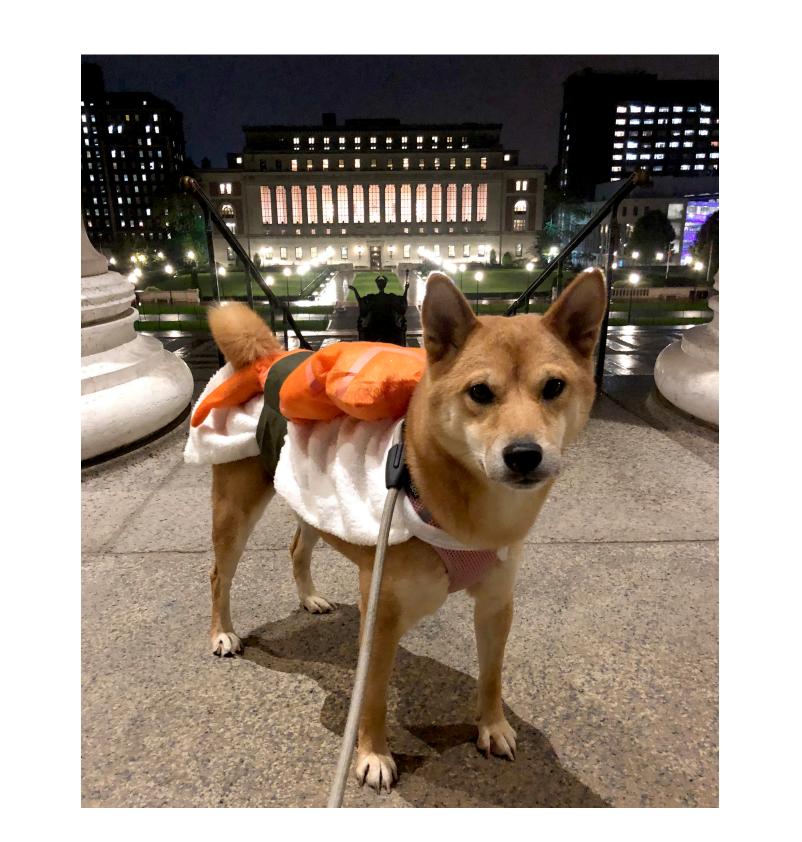
EFFICIENT FORMAL SAFETY ANALYSIS OF NEURAL NETWORKS

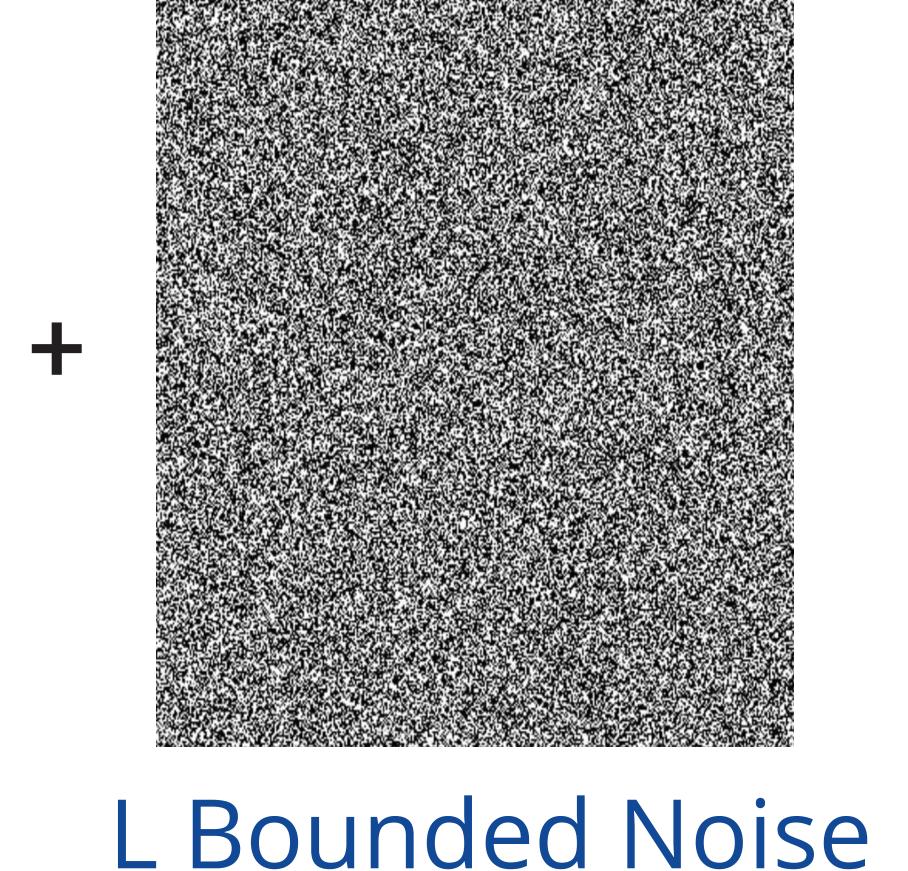
Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, Suman Jana

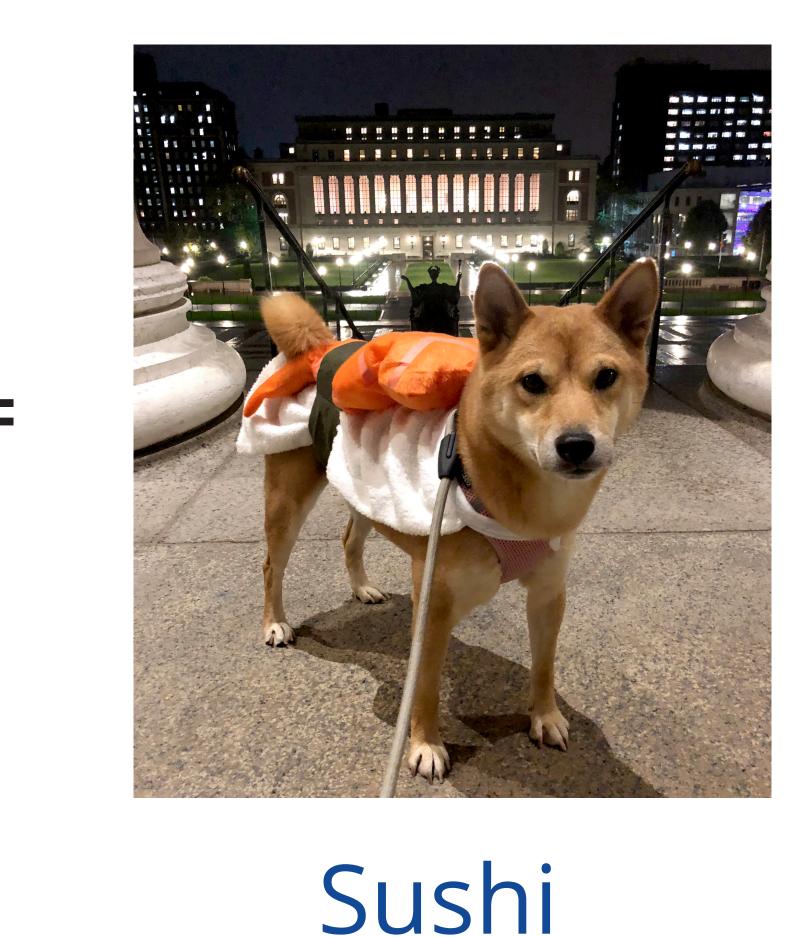
ADVERSARIAL EXAMPLES:

Existing violations of NN safety



Dog



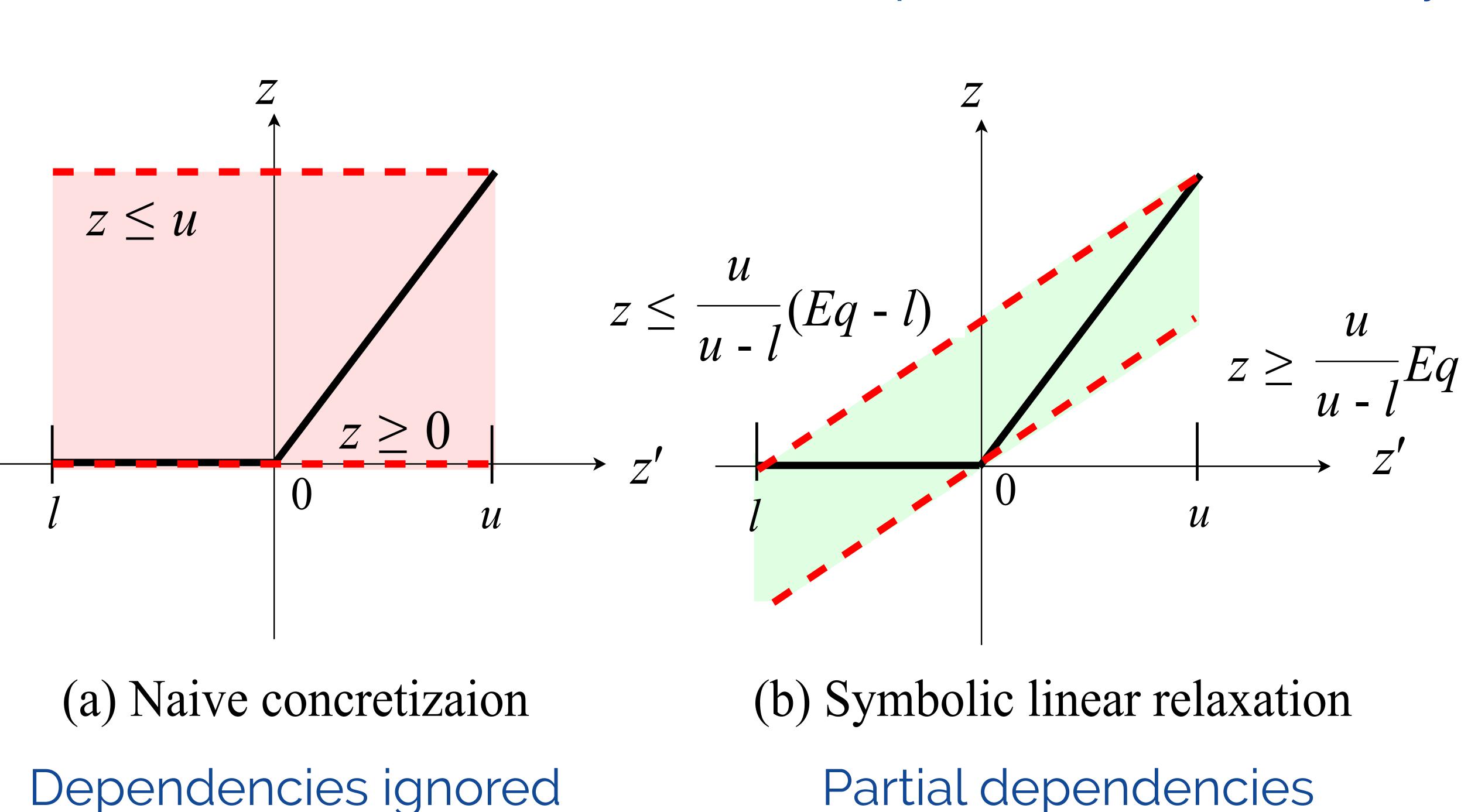


How to formally guarantee the absence of violations within bounded input ranges?

Output nonconvexity => need tight approximation

1. SYMBOLIC LINEAR RELAXATION

Tighter interval analysis for ReLU propagations
Partial input dependencies are preserved
Used to identify crucial **overestimated nodes**Overestimated nodes: the node performs nonlinearity

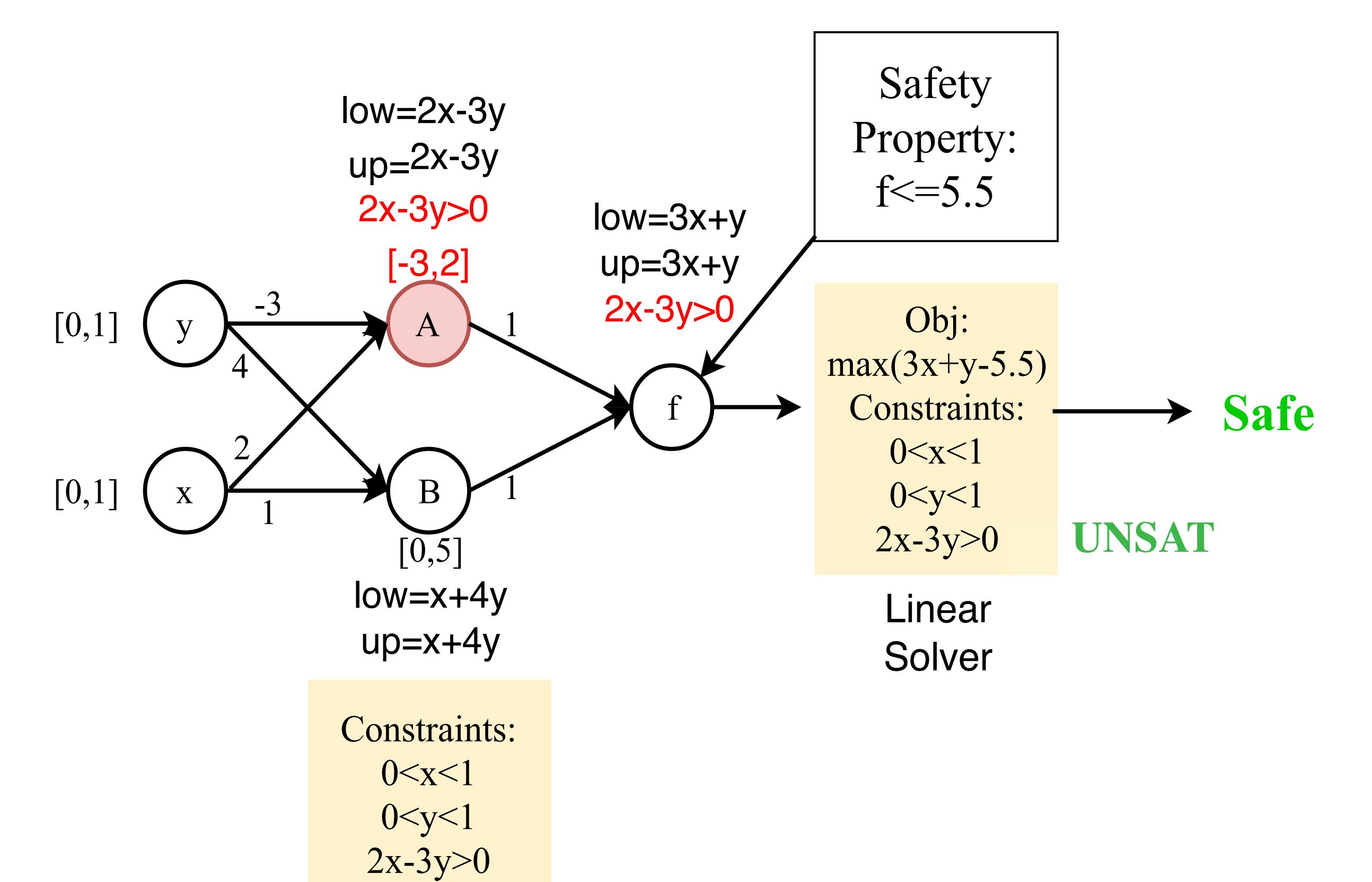


2. DIRECTED CONSTRAINT RELAXATION

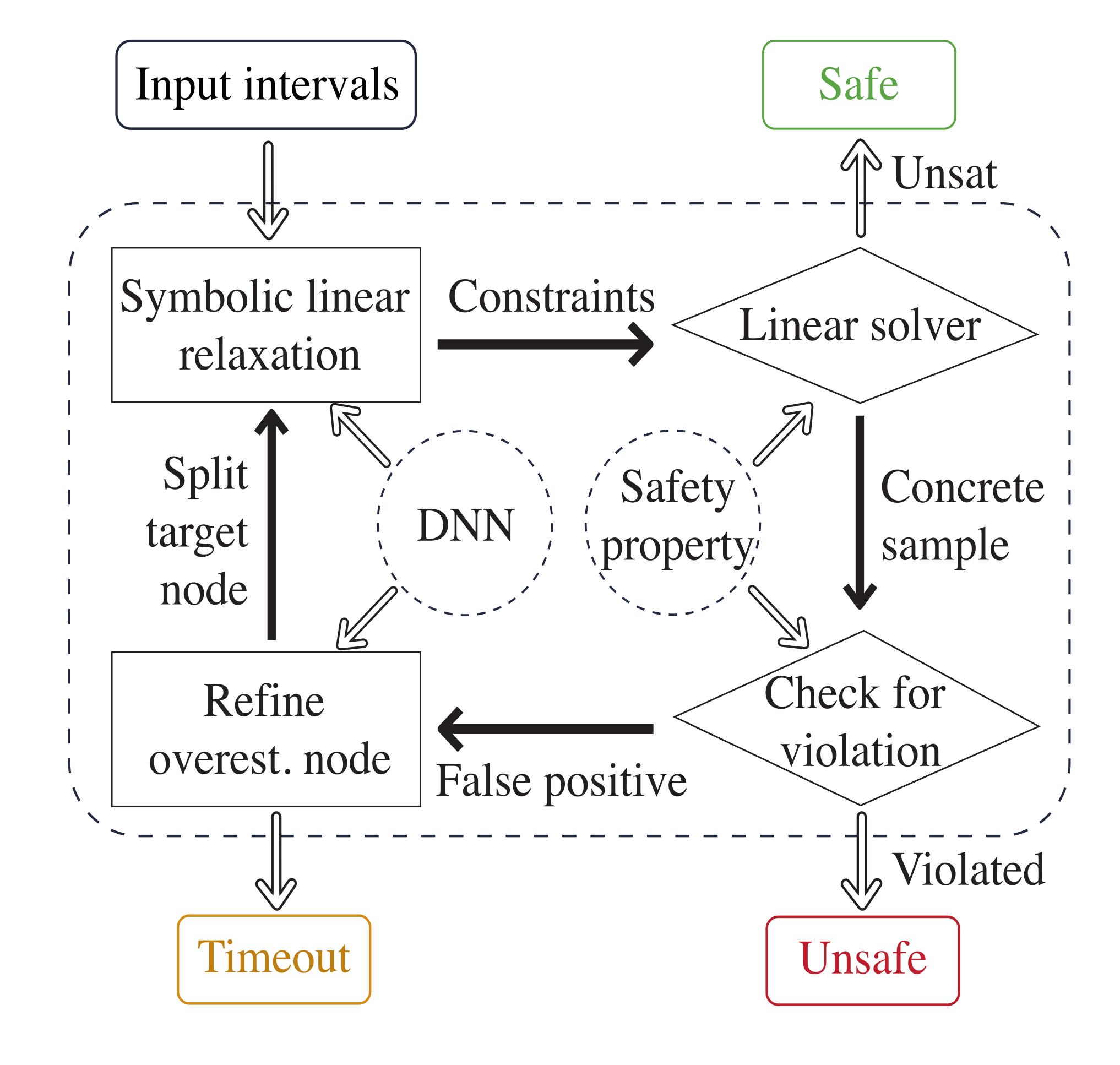
Locate influential overestimated nodes

Split each nonlinear ReLU into two linear cases

Solve each case with linear solver



HOW NEURIFY SOLVES THIS PROBLEM?



Interval & Linear solver

Given: (1) Input ranges (2) Targeted network and (3) predefined safety property

Neurify: (1) Locate overestimated nodes with symolic intervals and (2) Iteratively refine approximated output ranges with linear solver

Terminate: (1) Proved safe (2) Proved unsafe with counterexamples and (3) Timeout

RESULTS

ACAS Xu: 5000 times faster than Reluplex and 20 times faster than ReluVal

DAVE: First system to scale to network over **10,000** ReLUs. Various safety properties (e.g., L_1 , L_∞ , lightening, contrast) can be formally analyzed.

Code availabe at https://github.com/tcwangshiqi-columbia/Neurify