GARENTIA COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK Department of Computer Science

Problem

Fake news effect public opinions on topics such as climate change and political elections. Computational methods for fighting fake news mainly focus on automatic fact-checking rather than looking at writing styles of news articles.

Contribution

A system to detect hyperpartisan news articles as part of the shared task 4 in SemEval 2019. https://github.com/amal994/hyperpartisan-detection-task

Our system was ranked seventeenth out of forty two participating teams in the binary classification task with an accuracy score of 0.742 on the blind test set.

Method

We trained a Support Vector Machine model and a Truncated Singular Value Decomposition on a feature vector representing each article in our training dataset.

Error Analysis

Article 1: 2016 US presidential elections **Publisher:** Fox News Gold Label: Mainstream Predicted Label: Mainstream

Article 2: Article about Ivanka Trump Publisher: Yahoo! News Gold Label: Mainstream **Predicted Label:** Hyperpartisan

Spider-Jerusalem at SemEval-2019 Task 4 Hyperpartisan News Detection

Amal Alabdulkarim aa4235@columbia.edu

Meta-Learning Experiment

We followed a class-based weighted majority approach, where the classifiers that are better in classification of one class were given a higher weight for that class predictions and lower weight for their predictions in the other class.

 $w(c,H) = \frac{\sum_{i=1}^{n} \mathbb{1}(y = H)}{\sum_{i=1}^{n} \mathbb{1}(y)}$

Class Based Weights Equation

Article 3: Article about Social Justice **Publisher:** Online Athens **Gold Label:** Hyperpartisan Predicted Label: Hyperpartisan

Article 4: A Joke Made by Jimmy Kimmel **Publisher:** Real Clear Politics **Gold Label:** Hyperpartisan Predicted Label: Mainstream

$$\frac{f and c(x) = H}{(y = H)}$$

Results

Model preformance on validation and test sets

0.884.

Conclusion

- made it harder for the model to learn.

Tariq Alhindi tariq@cs.columbia.edu

alidation Set	Test Set
0.767	0.742
0.767	0.709
0.767	0.814
0.767	0.627

As for the meta-learning, the classifier had a validation accuracy of 0.899 and the baseline majority vote classifier

• We presented a summary of our experiments and analysis of our results and prediction errors. • This task was challenging due to the complexity in labeling such articles, and differences in writing styles across domains, publishers and individuals. • The small size of the training data along with the class imbalance also contributed to the complexity, which