
Secure Efficient Multiparty Computing of
Multivariate Polynomials and Applications

Dana Dachman-Soled1, Tal Malkin1, Mariana Raykova1, and Moti
Yung2

1 Columbia University
2 Columbia University and Google Inc.

Abstract. We present a robust secure methodology for computing func-
tions that are represented as multivariate polynomials where parties hold
different variables as private inputs. Our generic efficient protocols are
fully black-box and employ threshold additive homomorphic encryption.
They do not assume honest majority, yet are robust and can detect
any misbehavior. We achieve a solution that both, takes advantage of
the algebraic structure of the polynomials, and is polynomial-time in
all parameters (security parameter, polynomial size, polynomial degree,
number of parties). It further exploits a “round table” communication
paradigm to reduce the complexity in the number of parties.
A large collection of problems are naturally and efficiently represented
as multivariate polynomials over a field or a ring: problems from linear
algebra, statistics, logic, as well as operations on sets represented as
polynomials. In particular, we present a new efficient solution to the
multi-party set intersection problem, and a solution for a multi-party
variant of the polynomial reconstruction problem.
Keywords: secure multiparty computation, multivariate polynomial eval-
uation, additive homomorphic encryption, threshold cryptosystems, se-
cret sharing, multiparty set intersection.

1 Introduction

Secure multiparty computation (MPC) allows mutually distrustful par-
ties to jointly compute a functionality while keeping their inputs private.
Seminal feasibility results for the two-party and multi-party settings have
been demonstrated in [3,8,23,28,37,38]. These results show that any func-
tionality can be securely computed in time polynomial in the size of its
Boolean [8, 23,37,38] or arithmetic [1, 3, 7, 28] circuit representation.

While the works above yield strong feasibility results, the generic ap-
proaches typically lead to inefficient implementations since the circuit size
representation of a functionality may be very large. Thus, an important
open problem in MPC is designing highly efficient protocols for smaller,
yet large enough to be interesting, sets of functionalities, taking advantage
of the domain specific mathematical structure.



Problem Statement. We consider the problem of secure multiparty
computation functions that can be represented by polynomial-size multi-
variate polynomials. Each party’s inputs correspond to some subset of the
variables in the polynomial representation. There is a designated party
receiving output that learns only the output of the polynomial evalua-
tion while all other parties receive no output. 3 We assume a broadcast
channel and that the private keys for the threshold encryption scheme
distributed in a preprocessing stage.

Our Results: The General Protocol. We present a protocol that
allows multiple parties to compute the above functionalities, assuring
security against a dishonest majority and robustness (detection misbe-
havior). Our protocol is fully black-box assuming any threshold additive
homomorphic encryption with a natural property that we specify later,
(instantiated by Paillier scheme, say). The protocol utilizes a ”round ta-
ble” structure where parties are nodes in a ring network (which means
that frequently a party only communicates with the consecutive parties
around the table). This structure (employed already in past protocols)
has two benefits: first, it allows each party to be offline for the majority
of the execution of the protocol and to be involved only when it needs
to contribute its inputs at its turn. Second, it allows a division of the
communication complexity into two types: ”round table” communication
complexity including messages exchanged between two neighboring par-
ties, and broadcast communication complexity including messages sent
simultaneously to all parties. We give simulation-based proofs of security
in the Ideal/Real (standard) Model as per definitions in [24].

To the best of our knowledge, the only paper that has considered
secure computation of multivariate polynomials is [18]. This recent inde-
pendent work has focused on multivariate polynomials of degree 3 but
points out that the proposed protocols can be generalized to higher de-
gree polynomials, however, with communication complexity that is no
longer optimal, leaving as an open question improvements of this com-
plexity. Their protocol is based on the compiler of [27], but with the
difference being that the outer and the inner protocols inhere are instan-
tiated with efficient constructions tailored for multivariate polynomials.
The communication complexity of their protocol is (sub)-exponential in
the number of variables t: O(poly(k)dbt/2c) for polynomials of degree d
and security parameter k. Our work, in turn, improves their commu-
nication complexity to be fully polynomial (i.e., polynomial in all pa-

3 We note that our protocol can be generalized to allow any subset of the parties to
receive output.



rameters of the problem). Clearly, one can take a poly-size multivariate
polynomial and translate it to a circuit with poly time secure compu-
tation soultion, but this will have a huge polynomial factor expansion
and will lose the structure enabling the special-purpose speedups. We
achieve ”round-table” complexity 10kDn(m−1) and broadcast complex-

ity k(10D+ 1)(
∑m

j=1

∑lj
t=1 logαj,t + 1) for m parties where party i has li

inputs of degrees αi,1, . . . , αi,li , D being the sum of the logarithms of the
variable degrees for polynomials consisting of n monomials. Next, since
every polynomial can be easily converted into an arithmetic circuit, our
protocol is also a protocol for MPC of a subclass of all arithmetic circuits.
From this point of view, the work of [28] addresses a comparable problem
to ours (constructing a MPC protocol for all poly-size arithmetic circuits,
using a black-box construction and assuming no honest majority). The
work of [18] already improves in the worst case the complexity results of
[28] (for proper set of multivariate polynomials), and as we noted above
we bring additional improvement (intuitively our amortized broadcast
complexity is linear in the size of the representation of the largest term
of the polynomial, and does not depend on the number of terms in the
representation, which contributes to the size of the arithmetic circuit).
Further, the protocol of [28] requires as many rounds (involving all the
parties) as the depth of the circuit and communication complexity de-
pending on the size of the circuit. In contrast, we achieve a number of
rounds independent of depth of the size of the arithmetic circuit of the
polynomial (and our round-complexity is actually constant when either
counting a round-table round as one round or when considering only a
constant number of parties).

Our Results: Special Cases. The class of polynomial size mul-
tivariate polynomials contains a wide range of efficiently representable
functionalities with special structure that enables further optimizations.
Most of the commonly used statistics functions can either be represented
as polynomials or approximated with polynomials using Taylor series ap-
proximation for trigonometric functions, logarithms, exponents, square,
etc. Examples include average, standard deviation, variance, chi-square
test, Pearson’s correlation coefficients, and central moment of statistical
distributions. Matrix operations (i.e., linear algebra) can also be trans-
lated to polynomial evaluations.

In particular, as a special case of the general protocol, we implement
secure multiparty set intersection against a malicious adversary control-
ling a majority of the parties; we note that the set intersection question in
the two party case has been addressed in many works [11,12,20,26,29,30]



while there are fewer works that have considered the multiparty ver-
sion. Two works adress the issue in the computational protocol setting.
First, Kissner et al. [30] present a semi-honest protocol and suggests us-
ing generic zero communication complexity O(m2d2) for m parties with
input sets of size d. The work of [35] improves this complexity by a factor
of O(m) for m party protocols, using more efficient ZK based on pair-
ings. In addition, relatively inefficient information theoretic solutions are
presented in [33, 34]). Our protocol achieves communication complexity
O(md+ 10d log2 d) improving the existing works. We achieve linear com-
plexity in the number of parties m due to the round table communication
paradigm, whereas even the recent unpublished work [9] is quadratic in
the number of parties. We note that our scheme extends the approach of
representing a set as the zeroes of a polynomial as in [2, 5, 14,20].

Finally, when polynomial’s coefficients correspond to the input of the
designated receiver, we obtain a multi-party oblivious multivariate polyno-
mial evaluation, a generalization of the problem of oblivious polynomials
evaluation [31] to inputs from multiple parties.

Techniques. Many of our techniques exploit the ”nice structure”
of multivariate polynomials as well as various interactions of this struc-
ture with other algebraic and cryptographic primitives. First, we crucially
utilize the fact that multivariate polynomials are linear operators when
combined with additive homomorphic encryption and polynomial secret
sharing. We formalize this property by presenting a commutativity prop-
erty between the evaluation of multivariate polynomials and reconstruc-
tion of Shamir’s secret sharing [36]. Intuitively, this allows us to evaluate
a given polynomial on multiple (modified) Shamir secret shares in paral-
lel and obtain the final evaluatation of the polynomial by reconstructing
the resulting secret shares. This technique allows us to apply (black box)
”cut-and-choose” techniques to verify the correctness of the evaluation,
without revealing information about the shared inputs or outputs. We
note that analogous techniques were used in a different context by [10,12].

A second property of multivariate polynomials is that they can be
computed over additive homomorphic encryption non-interactively in a
round-table type protocol where each participant incrementally contributes
his inputs to the encryption of a monomial outputted by the previous
participant (note that a participant’s contribution to a given monomial
amounts to multiplication of the encrypted monomial by a scalar).

We additionally use the polynomial structure of a variant of Shamir’s
threshold sharing in zero knowledge protocols proving that inputs were
shared correctly and committed under homomorphic encryption. We uti-



lize Lagrange interpolation combined with what we call vector homomor-
phic encryption (where the homomorphic properties hold for both the
plaintexts and the encryption randomness; which is true for many of the
known homomorphic encryption schemes [15,17,25,32]) to verify that in-
puts were shared correctly by interpolating over encrypted values. This
verifies that inputs were shared and encrypted correctly, provided that
the randomness for the encryptions was chosen in a specific way. This
encrypted interpolation technique combined with the large minimum dis-
tance of Reed-Solomon codes allows us to guarantee the correctness of
an entire computation on encrypted codewords based on the verification
that a small random subset of shares were computed correctly. Finally,
we use the linear operator properties of the sharing polynomials for share
re-randomization under additive homomorphic encryption.

We note that when we instantiate our protocol with homomorphic
encryption over a ring, we apply the technique of Feldman ([16]) and
also used, e.g., in Fouque et al. ([17]) for Paillier sharing that transforms
interpolation over an RSA-composite ring to an interpolation over the
integers (where computing inverses, i.e., division, is avoided and finding
uninvertible elements is hard, assuming factoring is hard).

2 Protocol Overview

Semi-honest structure: As described above, multivariate polynomials
can be computed over additive homomorphic encryption by a round-table
protocol. This constitutes the underlying semi-honest evaluation protocol.

Robustness idea: To achieve security against malicious adversaries, we
employ the commutativity between evaluation of multivariate polynomi-
als and Shamir’s secret sharing reconstruction described above. Consider
the following simplified example that illustrates a our basic techniques.
Let us say that we have m parties that wish to evaluate the univariate
polynomial Q(x) = x5+10x3+6x+9, at point x, where x is the committed
input of Party 1. Note that allowing Party 1 to do the entire computa-
tion will not ensure that the outcome is consistent with the committed
input. One possible solution is to require Party 1 to commit to its input
x by encrypting x with a homomorphic encryption scheme, and have all
parties compute the encrypted result using the homomorphic properties
of the encryption, which is then decrypted. However, in order to compute
all polynomial functions we will need a threshold doubly-homomorphic
encryption scheme. Although Gentry, [22], recently introduced the first
known doubly-homomorphic encryption scheme, a threshold analogue is
not yet known.



Instead, we take the following approach: Party 1 computes a Shamir
secret-sharing of its input x by choosing a polynomial Px of degree k
uniformly at random conditioned on Px(0) = x. Now, instead of com-
mitting to the value x, Party 1 commits to, say, 20k input shares of
Px : Px(1), . . . , Px(20k). Next, Party 1 commits to 20k output shares of
Q ◦ Px(i) : Q(Px(1)), . . . ,Q(Px(20k)). Notice that Q ◦ Px(i) is a poly-
nomial of degree 5k and that Q ◦ Px(0) = Q(Px(0)) = Q(x). Thus, by
reconstructing Q ◦ Px(0) we obtain the output value Q(x). After Party
1 sends the input and output commitments, the parties verify efficiently
that the input and output shares indeed lie on a polynomial of degree
k and 5k respectively using an interpolation algorithm we define below.
Now, the parties run a cut-and-choose step where a set I ⊂ [20k] of size
k is chosen at random. For each index i ∈ I, Party 1 must open the
commitments to reveal Px(i) and Q ◦ Px(i). The remaining parties now
verify privately that Q ◦ Px(i) was computed correctly. Note that due
to the secret-sharing properties of the commitment scheme, the cut-and-
choose step reveals no information about Px(0) = x or Q◦Px(0) = Q(x).
Now, let’s assume that Party 1 acted maliciously. Since the set I was
chosen at random, and due to the large distance of Reed-Solomon codes,
we show that if Party 1 is able to open all the shares corresponding to I
correctly, then with very high probability Party 1 must have computed all
of the output shares correctly. We note that the above description leaves
out important re-randomization techniques (that are described in the
full protocol) whose goal is to prevent parties from learning during the
incremental evaluation and robustness checking.

Efficient Robustness: Although the technique described above is suffi-
cient to ensure that the parties behave honestly, it induces a huge blow-up
in the number of required shares. Indeed, in order to reconstruct the zero
coefficient of a polynomial of degree deg, we must have at least deg + 1
secret shares. Thus, when evaluating a polynomial such as Q = x2

n
, we

would require an exponential number of shares. To prevent this blow-up,
we employ an input preprocessing step (described in Section 3).

Secure output reconstruction: Finally, we use a threshold decryption
algorithm to ensure that no subset of the parties can decrypt the interme-
diate messages exchanged. The threshold decryption is needed in the case
that more than one party contributes its inputs to the polynomial (and is
actually not necessary in our toy example above). Any additive homomor-
phic threshold encryption scheme (with one additional natural property,
which we describe later) would suffice for the correctness of our protocol.
Examples of such schemes are the El Gamal threshold encryption scheme



[21] and the Paillier threshold encryption scheme [17]. Note that additive
El Gamal does not allow efficient decryption over a large domain, but it
sufficies for our Set Intersection applications. We use the Paillier thresh-
old encryption scheme to instantiate our general polynomial evaluation
protocols. To obtain the final output, the designated party reconstructs
the encryption of the final output value using Lagrange interpolation over
encrypted values and decrypts with the help of the other parties.

3 Definitions and Building Block Protocols

We use a standard simulation-based definition of security see [6], and
follow the definitions of zero knowledge proofs of knowledge and commit-
ment schemes presented in [24].

Notation: We denote by ComB a perfectly binding commitment scheme
and by ComH a perfectly hiding commitment scheme. Given d+ 1 eval-
uation points (x0, y0), . . . (xd, yd) on a polynomial of degree d, we denote
the interpolation value at the point x as Lx0,...,xd(y0, . . . , yd, x).

3.1 Vector Homomorphic Encryption

We require threshold additive homomorphic encryption scheme with the
following additional property, capturing the fact that the homomorphism
applies also to the randomness.4 These property is satisfied by most
known homomorphic encryption schemes: Paillier [32] and threshold Pail-
lier [17], ElGamal [15], and Goldwasser-Micali [25].

Property 1. Let E = (GEN,ENC,DEC) be an encryption scheme where
the plaintexts come from a ring R1 with operations (+, ·), the randomness
comes from a ring R2 with operations (⊕,�), and the ciphertexts come
from a ring R3 with operations (⊗,ˆ). We say that E is vector homo-
morphic if the following holds: ENC(m1; r1)⊗ENC(m2; r2) = ENC(m1 +
m2; r1 ⊕ r2) and ENC(m; r)c = ENC(c ·m; r � c).

3.2 Polynomial Code Commutativity

Shamir secret sharing [36]/Reed-Solomon codes are commutative with
respect to polynomial evaluations, which we formalize as follows:

4 We actually only need a slightly weaker property, but to simplify the presentation
we assume our encryption scheme possesses the stronger property defined here.



Property 2 (Polynomial Code Commutativity). Let Q(x1, . . . , xm) be a
multivariate polynomial. Let Px(1), . . . , Px(t+ 1) be Shamir secret shares
of a value x where Px is a polynomial of degree t such Px(0) = x. We can
reconstruct x from its secret shares using Lagrange interpolation L. The
evaluation of Q commutes with L in the sense that we can compute the
value Q(x1, . . . , xm) with either of the following algorithms:

(Q ∗ L)(Px1(1), . . . Px1(t+ 1), . . . Pxm(1), . . . Pxm(t+ 1), 0) =

= Q((L(Px1(1), . . . Px1(t+ 1), 0), . . . , L(Pxm(1), . . . Pxm(t+ 1), 0))) =

= Q(x1, . . . xm),

where we first use L to retrieve the secrets and then evaluate Q, or

(L ∗Q)(Px1(1), . . . Px1(t+ 1), . . . Pxm(1), . . . Pxm(t+ 1), 0) =

= L(Q(Px1(1), . . . , Pxm(1)), . . . ,Q(Px1(t+ 1), . . . , Pxm(t+ 1)), 0) =

= L(w1, . . . , wt+1, 0) = Q(x1, . . . xm),

where we evaluate Q on each set of shares of x1, . . . , xm to obtain shares
of Q(x1, . . . , xm) and then use L to reconstruct the final secret.

3.3 Incremental Encrypted Polynomial Evaluation

We will use homomorphic encryption to allow multiple parties to evalu-
ate a multivariate polynomial depending on their inputs by incrementally
contributing their inputs to partial encrypted evaluations of its monomi-
als. This is facilitated by the following property:

Property 3 (Incremental Encrypted Polynomial Evaluation). Let m be
the number of parties evaluating a multivariate polynomial Q defined by

Q(x1,1, . . . , x1,l1 , . . . , xm,1, . . . , xm,lm) =
n∑
s=1

cs(
m∏
j=1

hj,s(xj,1, . . . , xj,lj )),

where hj,s represents the inputs of party j to the s-th monomial of Q.
Let E = (GEN,ENC,DEC) be an additive homomorphic encryption. We
define the partial evaluations bj,s (including the contributions of parties
1,. . . , j) of the monomials s, 1 ≤ s ≤ n of Q as follows:

b0,s = ENC(cj) for 1 ≤ j ≤ n, and bj,s = b
hj,s(xj,1,...,xj,lj )

j−1,s for 1 ≤ j ≤ m



3.4 Polynomial Interpolation Over Encrypted Values

In this section we present a protocol that allows a verifier to verify (with-
out help from the prover) that the prover’s encrypted points lie on a poly-
nomial of low degree, assuming the prover constructed the encryptions in
a predetermined manner. Recall that Lagrange interpolation allows us,
given d + 1 points, to reconstruct the polynomial of degree d that inter-
polates the given points. In the following, we use the fact that Lagrange
interpolation can, in fact, be carried out over encrypted points when the
known encryption used possesses the vector homomorphic Property 1.
Since the encryption is over a ring we use Feldman’s technique for shift
interpolation by factorial [16].

Lagrange Interpolation Protocol Over Encrypted Values
(LIPEV)

Input: (1,ENCpk(y1, r1)), . . . (A,ENCpk(yA, rA)), d where d+ 1 < A,
Output: Verifier outputs Accept if there are polynomials P1 ∈
R1[x], P2 ∈ R2[x] of degree at most d such that yj = P1(j) for 1 ≤ j ≤ A
and rj = P2(j) (P1 and P2 are defined with respect to the operations in
the respective rings) for 1 ≤ j ≤ A.
Verification Protocol:

1. Let ∆ = A!.
2. Let lj(x) = ∆ ·

∏d+1
i=1,i 6=j

x−i
j−i for 1 ≤ j ≤ d+ 1.

3. Verifier checks whether ENCpk(yi, ri)
∆ =

∏d+1
j=1(ENCpk(yj , rj))

lj(i),
and rejects otherwise.

Using the LIPEV protocol, a prover can prove to a verifier that A
encrypted points lie on one polynomial of degree d, provided that the
randomness for the encryptions was chosen in a specific way; namely,
the random values chosen must also lie on a polynomial of degree d. For
completeness, we describe next how to compute the random values for
the encryptions so that they lie on a polynomial P2 ∈ R2[x] of degree d.
We note that even though the randomness for all A encrypted points are
not chosen uniformly at random, semantic security is still preserved since
the randomness for d+1 of the points is chosen uniformly at random and
the remaining A−d−1 encryptions can be computed given only the first
d+ 1 encryptions due to Property 1.



Randomness Interpolation

Input: (1, y1), . . . , (A, yA), r1, . . . , rd+1 for d+ 1 < A
Output: r∆d+2, . . . , r

∆
A such that the Lagrange Interpolation Pro-

tocol Over Encrypted Values outputs accept on the input:
[i,ENCpk(yi, ri)

∆]1≤i≤A, d.

Protocol:

1. Compute lj(x) = ∆
∏d+1
i=0,i 6=j

x−i
j−i for 1 ≤ j ≤ d+ 1.

2. Compute r∆i =
∏d+1
j=0(rj)

lj(i) for d+ 2 ≤ i ≤ A.

4 Multiparty Polynomial Evaluation

The multiparty polynomial evaluation has the following setup:

– Each party Tj has lj inputs Xj = {xj,1, . . . , xj,lj} for 1 ≤ j ≤ m.
– A designated output receiver T ∗ (one of the parties T1, . . . , Tm).
– A polynomial Q(x1,1, . . . , x1,l1 , . . . , xm,1, . . . , xm,lm), which depends on

the inputs of all parties.

We use the following representation of the polynomial Q:

Q(x1,1, . . . , x1,l1 , . . . , xm,1, . . . , xm,lm) =

=
n∑
s=1

csx
α1,1,s

1,1 . . . x
α1,l1,s

1,l1
. . . x

αm,1,s
m,1 . . . x

αm,lm,s
m,lm

=

n∑
s=1

cs(

m∏
j=1

hj,s).

where hj,s(xj,1, . . . , xj,lj ) = x
αj,1,s
j,1 x

αj,2,s
j,2 . . . x

αj,lj ,s

j,lj
and cs is a known coeffi-

cients for 1 ≤ j ≤ m. If xj,v does not participate in the s-th monomial of
Q, then αj,v,s = 0. Alternatively, we view hj,s for 1 ≤ j ≤ m, 1 ≤ s ≤ n
in the following way:

hj,s(xj,1, x
2
j,1, . . . , x

2blogαj,1,sc

j,1 , . . . , xj,lj , x
2
j,lj
, . . . , x2

blogαj,lj ,sc

j,lj
) (1)

in which each variable is of degree at most one.

Notation. In the protocol we will use the following variables: Dh,s =∑m
j=1 deg(hj,s) for 1 ≤ s ≤ n; Dh,j,s = k

∑j
v=1 deg(hv,s) for 1 ≤ j ≤ m

where hv,s is defined as in Equation 1 (variables of degree at most 1);
D = maxns=1Dh,s. Also we let ∆ = 10kD! be a public parameter, and
E = (GEN,ENC,DEC) be a threshold encryption scheme that possesses
Property 1 with public key pk and secret keys sk1, . . . , skm for the m
parties T1, . . . , Tm.



Protocol Intuition. The protocol consists of four phases: Input Pre-
processing, Round-Table Step, Re-randomization, Verification and Recon-
struction. During the Input Preprocessing phase, the parties use tech-
niques from [12] to transform Q from polynomial over the variables x1,1,
. . . , x1,l1 , . . . , xm,1, . . . , xm,lm into a polynomial of lower degree over the

variables xj,1, x
2
j,1, . . . , x

2maxns=1blogαj,1,sc

j,1 , . . . , xj,lj , x
2
j,lj
, . . . , x2

maxns=1blogαj,lj ,sc

j,lj
for 1 ≤ j ≤ m. Each party Ti commits to shares of its new inputs via
the Efficient Preprocessing protocol described in the full version of the
paper [13]. In the Round Table Step the parties compute the encrypted
evaluations of the monomials in Q in a round-table fashion. Next, in
the Re-Randomization phase, each party helps re-randomize the output
shares. Honest behavior of the parties is checked during the Verification
step via cut-and-choose and Preprocessing Verification protocol for the
committed inputs, which is described in the full version of the paper [13].
If the verification passes, the parties jointly decrypt the output shares and
the output receiver reconstructs the final polynomial evaluation result in
the Reconstruction phase. We now present the detailed protocol and state
our main theorem 5.

Multiparty Polynomial Evaluation Protocol Πpoly eval

Inputs: T1 : X1, sk1; . . . ; Tm : Xm, skm
Outputs: T ∗ : Q(x1,1, . . . , x1,l1 , . . . , xm,1, . . . , xm,lm); {T1, . . . , Tm}\T ∗ :⊥

Input Preprocessing:

1. For 1 ≤ j ≤ m, Party Tj converts each hj,s for 1 ≤ s ≤ n in the form
of Equation 1 (each variable is of degree at most one).

2. For 1 ≤ j ≤ m, Party Tj runs the Efficient Preprocessing pro-
tocol (see [13]) to generate 10kD shares for each of its new in-

puts xj,1, x
2
j,1, . . . , x

2blogαj,1c

j,1 , . . . , xj,lj , x
2
j,lj
, . . . , x2

blogαj,lj c

j,lj
where αj,t =

maxni=1 αj,t,i for 1 ≤ t ≤ lj and commits to the shares.

5 We note that for each intermediate monomial hj,s passed between the parties in the
round-table step, each Party j needs to transmit only Dh,j,s + 1 shares to Party
j + 1 since the rest of the shares may be constructed by the receiving party via La-
grange interpolation over committed values. This may yield significant savings in the
communication complexity, which we assumed in our discussion in the introduction.



Round-Table Step:

3. Party T1 computes encryptions of the polynomials coefficients b0,i =
ENCpk(cs; 1) for 1 ≤ s ≤ n.

4. For 1 ≤ s ≤ n, T1 chooses Dh,1,s + 1 random numbers

r1,s1 , . . . , r1,sDh,1,s+1. T1 uses the Randomness Interpolation protocol to

compute (r1,sDh,1,s+2)
∆, . . . , (r1,s10kD)∆.

5. For 1 ≤ i ≤ 10kD, 1 ≤ s ≤ n T1 uses the values chosen above to
compute

h1,s(i) = h1,s(Px1,1(i), . . . , P
x2

blogα1,1,jc
1,1

(i), . . . , Px1,l1 (i), . . . , P
x2

blogα1,l1,sc
1,l1

(i))

and b1,s,i = b
∆·h1,s(i)
0,j · ENCpk(0; r1i )

∆, which he sends to party T2.

6. For each 2 ≤ j ≤ m:

(a) Party Tj receives from party Tj−1 coefficients bj−1,1,i, . . . , bj−1,n,i
for 1 ≤ i ≤ 10kD.

(b) For 1 ≤ s ≤ n, Tj chooses Dh,j,s + 1 random numbers

rj,s1 , . . . , rj,sDh,j,s+1. Pj uses the Randomness Interpolation protocol

to compute (rj,sDh,j,s+2)
∆, . . . , (rj,s10kD)∆.

(c) For 1 ≤ s ≤ n Tj uses the values rj,si chosen above to compute
hj,s(i) = hj,s(Pxj,1(i), . . . , P

x2
blogαj,1c
j,1

(i), . . . , Pxj,lj (i), . . . , P
x2

blogαj,lj c

j,lj

(i))

and bj,s,i = b
∆·hj,s(i)
j−1,s,i · ENCpk(0; rj,si )∆.

(d) If j < m Tj sends all bj,s,i to Tj+1. If j = m for each 1 ≤ i ≤ 10kD
Tm computes S′i = Πn

s=1bm,s,i and sends them to all parties on the
broadcast channel.

Re-Randomization Step:

7. For 1 ≤ j ≤ m, Party Tj computes polynomial Pj,0 of degrees kD
such that Pj,0(0) = 0.

8. For 1 ≤ j ≤ m, Party Tj chooses kD + 1 random val-
ues rj,1, . . . , rj,kD+1 and uses the Randomness Interpolation proto-
col to compute r∆j,kD+2, . . . , r

∆
j,10kD. Tj commits to shares Zj,0 =

ENCpk(Pj,0(i); rj,i)
∆ for 1 ≤ i ≤ 10kD

9. All parties run the LIPEV protocol and a zero knowledge proof pro-
tocol (HEPKPV, see [13]) to ensure that each [Zj,i]1≤i≤10kD is an
encryption of a polynomial with constant coefficient 0.

10. The final encryptions are: Si = S′i ·Πm
j=1Zj,0 for 1 ≤ i ≤ 10kD.



Verification:

11. All parties verify using the Lagrange encrypted interpolation protocol
that the values Si lie on a polynomial of degree kD. Otherwise reject.

12. All parties run a multi-party coin-tossing protocol (see [13]) to choose
a random subset I of size k from [1, 10kD].

13. For each i ∈ I parties T1, . . . , Tm decommit their corresponding shares
from the Efficient Input Preprocessing.

14. All parties run the Preprocessing Verification for their inputs (see
[13]).

15. For each i ∈ I each party Tj decommits the i-th shares of its inputs
as well as the i-th share of the polynomials Pj,0. Additionally, each

party Tj reveals the randomness rj,si for 1 ≤ s ≤ n and rj,i used for
the corresponding shares. To verify, each party recomputes the entire
share S∗i , using the inputs and randomness revealed and checks that
Si = S∗i . If any verification fails the protocol is aborted.

Reconstruction:

16. For each 1 ≤ i ≤ 10kD each party computes its partial decryption si,j
of Si and sends it to the designated output receiver T ∗.

17. Party T ∗ uses the partial decryptions si,j for 1 ≤ j ≤
m to completely decrypt Si. T ∗ reconstructs the value of
Q(x1,1, . . . , x1,l1 , . . . , xm,1, . . . , xm,lm) via interpolation and division by
∆m.

Theorem 1. If the Decisional Composite Residuosity problem is hard in
Z∗n2, where n is a product of two strong primes, and protocol Πpoly eval is
instantiated with the threshold Paillier encryption scheme TPmenc such that
E = TPmenc, then Πpoly eval securely computes the Polynomial Evaluation
functionality in the presence of malicious adversaries.

5 Communication and Computational Complexity

Our protocol computes the polynomial functionality in a constant num-
ber of rounds (counting round-table rounds as one, or with a constant
number of players). The communication complexity of the protocol can
be divided into two types: messages that are broadcast to all parties
and the ”round-table” communication that is passed between two con-
secutive parties. We note that the ”round-table” communication can be
done off-line. The broadcast communication consists of the commitments



of the inputs shares, the decommitments used in the final verification
phase, the encrypted and decrypted output shares as well as the mes-
sages used in the coin tossing and HEPKPV protocols. These messages

add up to k(10D + 1)(
∑m

j=1

∑lj
t=1 logαj,t + 1). Note that the commu-

nication complexity may be much smaller than the size of the polyno-
mial representation. For example, if party Pj with input xj,1 must con-
tribute αj,t consecutive powers of xi: x

1
i , . . . , x

αj,t
i to αj,t different terms,

the broadcast communication complexity for this party will still only be
k(10D+ 1) logαj,t+ 1. The round-table messages passed between consec-
utive parties include all intermediate messages in the computation that
are sent by the all the parties except the last one, which in total are
10kDn(m − 1). The computational complexity (where we count number
of exponentiations) for all m parties in total is O(kDnm). Further if we
apply the share packing optimization from Section 6 over k executions of
the protocol we can drop k factor for the new amortized complexities.

Our protocol runs in constant number of ”round table” rounds, in
which every party in involved in order, while the protocol for secure com-
putation of arithmetic circuits [28] requires as many rounds as the depth
of the arithmetic circuit. It also requires fewer broadcasted messages com-
pared to techniques proving the polynomial evaluation via zero knowledge
proofs such as [4] since any ZK proof will have to be broadcasted. Ad-
ditionally a ZK protocol will require runs of a multiparty coin tossing
protocol to generate randomness for each ZK proof.

6 Protocol Optimizations and Application to Multiparty
Set Intersection

6.1 Optimizations

We apply several optimizations to the protocol given in Section 4 for
polynomials with specific structures. First, if we have a monomial that is
computed only from the inputs of a subset of the parties, then clearly, we
can evaluate it in a round-table fashion that only includes parties in this
subset and proceed to the Re-Randomization Step.

Additionally, in some cases, we can remove the requirement of a party
to share all of its inputs. Recall that we require the input-sharing in
order to enable the cut-and-choose verification of honest behavior of the
parties In the case when an input is used only once in the polynomial,
this type of proof may not be necessary. We can avoid sharing an input
if it belongs to the first party in the round table computation of the
corresponding monomial as long as we can verify that the encryption



itself is valid with a ZKPOK and extract the encrypted value. We notice
that the requirements imposed on the structure of the polynomial in order
to be able to apply this optimization substantially limit the range of the
possible polynomials. However, in the next section we will see how the
problem of multiparty set intersection can be reduced to the evaluation
of exactly this type of polynomials.

Finally, we use the approach of multi-secret sharing from [19] that al-
lows us to use the same polynomials to share the input values for multiple
parallel executions of the protocol, which lowers the amortized communi-
cation complexity of our protocol. Intuitively, we choose a set of points on
the sharing polynomials to represent the input values for each of the dif-
ferent executions of the protocol, say points 1 to k for each of k different
executions. The shares that will be used in the computation will be those
corresponding to points not in this set. As a result, the final output poly-
nomial will evaluate to each of the different output values corresponding
to each execution at the points 1 to k respectively.

In the setting of our protocol in Section 4 we assume that the multi-
variate polynomial are known to all parties. By removing this requirement
and assuming that the polynomial coefficients are the inputs of one of the
parties, we reduce the problem to oblivious multivariate polynomial eval-
uation (introduced by [31] in the single-variable case) for a small class of
multivariate polynomials.

6.2 Multiparty Set Intersection

We apply the techniques introduced in Section 4 to the problem of mul-
tiparty set intersection. We give here a brief sketch. In the multiparty set
intersection problem, there are m parties T1, . . . , Tm who have input sets
X1, . . . , Xm and wish to jointly compute X1

⋂
. . .

⋂
Xm. While there are

several papers that address the set intersection problem in the two-party
case [2,5,20,26,29], the generalization to the multiparty setting has been
considered only in [14]. Recall that a set X = {x1, . . . , xd} can be repre-
sented as a polynomial P (x) = (x − x1) . . . (x − xd). Now if we consider
the polynomial P ′(x) = r · P (x) + x, where r is random, we have that
if x′ ∈ X then P ′(x′) = x′ and if x′ /∈ X then P ′(x′) is uniformly dis-
tributed (see [20]). In the multiparty case we have m parties with input
sets X1, . . . , Xm, represented by polynomials PX1(x), . . . , PXm(x). Thus
the polynomial R(x) = r·

∑m−1
i=1 PXi(x)+x, where r = r1+r2+· · ·+rm and

each ri is a randomly chosen input contributed by Party i, will have the
same property mentioned above: if x′ ∈ X1

⋂
. . .

⋂
Xm then R(x′) = x′

and if x′ /∈ X1
⋂
. . .

⋂
Xm then R(x′) is uniformly distributed. Now in the



setting of polynomial evaluation we let a designated party Pm evaluates
R(x) on its own inputs, and thus the output is exactly the intersection of
all sets with some additional random values. This problem now reduces
to the Multiparty Polynomial Evaluation problem.

Theorem 2. If the Decisional Composite Residuosity problem is hard
in Z∗n2, where n is a product of two strong primes, protocol Πpoly eval

is instantiated with the threshold Paillier encryption scheme TPmenc such
that E = TPmenc, and Q = R, then Πpoly eval securely computes the Set
Intersection functionality 6 in the presence of malicious adversaries.

Using the optimizations described in this section, we have that the
broadcast communication complexity of the Set Intersection protocol is
O(md+10d log2 d) (there is no round-table communication) and the com-
putational complexity is O(md2), where d >> k is the maximum input
set size of each party.

References

1. Abadi, M., Feigenbaum, J.: Secure circuit evaluation. J. Cryptol. 2(1), 1–12 (1990)
2. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private

databases. In: SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD interna-
tional conference on Management of data. pp. 86–97. ACM, New York, NY, USA
(2003)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing (1988)

4. Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the prod-
uct of two safe primes. In: In EUROCRYPT 1999. pp. 107–122 (1999)

5. Camenisch, J., Zaverucha, G.: Private intersection of certified sets. In: Proceedings
of Financial Cryptography ’09 (2009)

6. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13, 2000 (2000)

7. Canetti, R., Ishai, Y., Kumar, R., Reiter, M.K., Rubinfeld, R., Wright, R.N.: Selec-
tive private function evaluation with applications to private statistics. In: PODC
’01: Proceedings of the twentieth annual ACM symposium on Principles of dis-
tributed computing. pp. 293–304. ACM, New York, NY, USA (2001)

8. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols.
In: STOC ’88: Proceedings of the twentieth annual ACM symposium on Theory
of computing. pp. 11–19. ACM, New York, NY, USA (1988)

6 We consider here a slight variant of the Set Intersection functionality where Party
i for 1 ≤ i ≤ m − 1 submits the polynomial PXi to the Trusted Party, Party m
submits Xm and the Trusted Party returns the intersection of X1, . . . , Xm. In order
to compute the standard Set Intersection functionality, we must use the threshold
El Gamal encryption scheme.



9. Cheon, J.H., Jarecki, S., Seo, J.H.: Multi-party privacy-preserving set intersection
with quasi-linear complexity. Cryptology ePrint Archive, Report 2010/512 (2010),
http://eprint.iacr.org/

10. Choi, S., Dachman-Soled, D., Malkin, T., Wee, H.: Black-box construction of a
non-malleable encryption scheme from any semantically secure one. In: Theory of
Cryptography, Fifth Theory of Cryptography Conference, TCC (2008)

11. Cristofaro, E.D., Kim, J., Tsudik, G.: Linear-complexity private set intersection
protocols secure in malicious model. In: ASIACRYPT. pp. 213–231 (2010)

12. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private
set intersection. In: ACNS. pp. 125–142 (2009)

13. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Multiparty secure com-
putation over multivariate polynomials. Technical Report CUCS-024-10 (2010)

14. Dawn, L.K., Song, D.: Privacy-preserving set operations. In: in Advances in Cryp-
tology - CRYPTO 2005, LNCS. pp. 241–257. Springer (2005)

15. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Proceedings of CRYPTO 84 on Advances in cryptology. pp. 10–18.
Springer-Verlag New York, Inc., New York, NY, USA (1985)

16. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
FOCS. pp. 427–437. ACM, New York, NY, USA (1987)

17. Fouque, P.A., Poupard, G., Stern, J.: Sharing decryption in the context of voting or
lotteries. In: FC ’00: Proceedings of the 4th International Conference on Financial
Cryptography. pp. 90–104. Springer-Verlag, London, UK (2001)

18. Franklin, M., Mohassel, P.: Efficient and secure evaluation of multivariate polyno-
mials and applications. In: Applied Cryptography and Network Security. vol. 6123,
pp. 236–254 (2010)

19. Franklin, M., Yung, M.: Communication complexity of secure computation (ex-
tended abstract). In: STOC ’92: Proceedings of the twenty-fourth annual ACM
symposium on Theory of computing. pp. 699–710 (1992)

20. Freedman, M., Nissim, K., Pinkas, B.: Efficient private matching and set intersec-
tion. In: Proceedings of EUROCRYPT’04 (2004)

21. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (2007)

22. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC ’09: Pro-
ceedings of the 41st annual ACM symposium on Theory of computing. pp. 169–178.
ACM, New York, NY, USA (2009)

23. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC
’87: Proceedings of the nineteenth annual ACM symposium on Theory of comput-
ing. pp. 218–229. ACM, New York, NY, USA (1987)

24. Goldreich, O.: Foundations of cryptography: a primer. Found. Trends Theor. Com-
put. Sci. 1(1), 1–116 (2005)

25. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: STOC ’82: Proceedings of the fourteenth
annual ACM symposium on Theory of computing. pp. 365–377. ACM, New York,
NY, USA (1982)

26. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In: TCC. pp. 155–175 (2008)

27. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
— efficiently. In: CRYPTO 2008: Proceedings of the 28th Annual conference on
Cryptology. pp. 572–591 (2008)



28. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: TCC ’09: Proceedings of the 6th Theory of Cryptography
Conference on Theory of Cryptography. pp. 294–314 (2009)

29. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive ot and secure computation of set intersection. In: TCC. pp. 577–594
(2009)

30. Kissner, L., Song, D.X.: Privacy-preserving set operations. In: CRYPTO. pp. 241–
257 (2005)

31. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5),
1254–1281 (2006)

32. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: In Proceedings of EUROCRYPT 1999. pp. 223–238. Springer-Verlag
(1999)

33. Patra, A., Choudhary, A., Rangan, C.: Information theoretically secure multi party
set intersection re-visited. In: Jacobson, M., Rijmen, V., Safavi-Naini, R. (eds.)
Selected Areas in Cryptography, Lecture Notes in Computer Science, vol. 5867,
pp. 71–91. Springer Berlin / Heidelberg (2009)

34. Patra, A., Choudhary, A., Rangan, C.P.: Round efficient unconditionally secure
mpc and multiparty set intersection with optimal resilience. In: Proceedings of the
10th International Conference on Cryptology in India: Progress in Cryptology. pp.
398–417. INDOCRYPT ’09 (2009)

35. Sang, Y., Shen, H.: Efficient and secure protocols for privacy-preserving set oper-
ations. ACM Trans. Inf. Syst. Secur. 13, 9:1–9:35 (November 2009)

36. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
37. Yao, A.C.C.: Protocols for secure computations. In: FOCS. pp. 160–164 (1982)
38. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS.

pp. 162–167 (1986)


