
On the Performance, Feasibility, and Use of
Forward-Secure Signatures

Eric Cronin, Sugih Jamin
�

EECS Department
University of Michigan

Ann Arbor, MI 48109-2122�
ecronin,jamin � @eecs.umich.edu

Tal Malkin
�

Dept. of Computer Science
Columbia University
New York, NY 10027

tal@cs.columbia.edu

Patrick McDaniel
AT&T Labs–Research

Florham Park, NJ 07932

pdmcdan@research.att.com

ABSTRACT
Forward-secure signatures (FSSs) have recently received much at-
tention from the cryptographic theory community as a potentially
realistic way to mitigate many of the difficulties digital signatures
face with key exposure. However, no previous works have explored
the practical performance of these proposed constructions in real-
world applications, nor have they compared FSS to traditional, non-
forward-secure, signatures in a non-asymptotic way.

We present an empirical evaluation of several FSS schemes that
looks at the relative performance among different types of FSS as
well as between FSS and traditional signatures. Our study provides
the following contributions: first, a new methodology for compar-
ing the performance of signature schemes, and second, a thorough
examination of the practical performance of FSS. We show that
for many cases the best FSS scheme has essentially identical per-
formance to traditional schemes, and even in the worst case is only
2-4 times slower. On the other hand, we also show that if the wrong
FSS configuration is used, the performance can be orders of mag-
nitude slower. Our methodology provides a way to prevent such
misconfigurations, and we examine common applications of digi-
tal signatures using it.

We conclude that not only are forward-secure signatures a useful
theoretical construct as previous works have shown, but they are
also, when used correctly, a very practical solution to some of the
problems associated with key exposure in real-world applications.
Through our metrics and our reference implementation we provide
the tools necessary for developers to efficiently use FSS.

�
Sugih Jamin is supported in part by the NSF CAREER Award

ANI-9734145, the Presidential Early Career Award for Scientists
and Engineers (PECASE) 1998, and the Alfred P. Sloan Founda-
tion Research Fellowship 2001. Additional funding is provided by
AT&T Research, and by equipment grants from Sun Microsystems
Inc., Compaq Corp., and Apple Inc. Part of this research was done
when Sugih Jamin was at the University of Cambridge and the Uni-
versity of Tokyo.�
Part of this research was done while Tal Malkin was at AT&T

Labs–Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’03, October 27–30, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-738-9/03/0010 ...$5.00.

Categories and Subject Descriptors
E.3 [Data Encryption]: Public key cryptosystems

General Terms
Performance, Design, Security

Keywords
forward-secure signatures, digital signatures

1. INTRODUCTION

The Key-Exposure Problem
Digital signatures play an essential role for security on the Internet.
Electronic commerce, private and authenticated communication,
and secure storage are but a few of the multitude of applications
that rely on signatures to assert authenticity, ownership, or delega-
tion. However, signature-based systems are very vulnerable to the
key exposure problem, which in practice is a far more likely cause
of compromise than cryptanalysis. Once a private key has been
exposed, not only are all future signatures associated with the com-
promised key suspect, but all past signatures as well, since there is
no secure way to tell that a signature was generated before or after
the compromise. All previous signatures must thus be indirectly re-
voked. The damage of these compromises can be enormous, both
in terms of overhead in revoking and reissuing all past signatures,
and in terms of the new security vulnerabilities introduced by the
possibility of repudiation.

For example, the compromise of a Certificate Authority’s (CA’s)
root private key results in all certificates from that CA being un-
verifiable until clients are updated with the new root public key,
not just new certificates signed by the replacement key. All ex-
isting certificates (signed public keys) must also be revoked and
re-certified with the new key, as there is no way to verify that they
were signed prior to the compromise. Where the root CA is popular
(e.g,. Verisign), the compromise could lead to widespread disrup-
tion of the Internet. The digital signing of legal contracts illustrates
another environment where the possibility of key exposure severely
weakens security. By purposely exposing their private key, a party
that wishes to back out of a contract gains the ability to repudiate
their previous signature at any time by claiming it to be forged.
As another example, consider an electronic checkbook application,
in which each check is created by the account holder signing an
amount, a recipient, and the date using the checkbook’s private
key. The recipient submits the check and signature to the account
holder’s bank, and the check is honored if the signature is deemed
valid. Here, if the private key is exposed, it is incumbent upon the



bank and account holder to investigate and possibly repudiate every
check received by the bank, possibly even valid uncashed checks.

The above examples illustrate that limiting the effect of key ex-
posure should be afforded at least as much effort as prevention of
cryptanalysis. However, due to lack of useful counter-measures,
this design goal has not been widely embraced in existing systems.
Currently, the most widely used techniques to limit damage due to
key exposure are the use of short lived keys and centralized times-
tamping services. Neither of these solutions scales well: the former
requires many public keys to be certified, distributed, and main-
tained, while the latter requires a trusted third party who itself must
never be compromised in order for security to be maintained.

Forward-Secure Signatures and Applications
Forward-secure signatures (FSS), first proposed by Anderson [2]
and formalized by Bellare and Miner [4], have recently emerged
as a promising viable mitigation technique for key exposure. FSS
differ from traditional signatures in that the private keys are peri-
odically updated via a one-way process that produces a new private
key corresponding to the same public key. The FSS construction
guarantees that once updated, past iterations of a private key cannot
be recovered from the new private key, implying that the exposure
of the current private key does not render past signatures suspect.
The key exposure problem is therefore mitigated by FSS schemes,
since any material that could be used to forge a past signature is
destroyed.1

FSS can potentially change the semantics of certificates and sig-
natures in a fundamental way, as we illustrate by revisiting some
of the examples above. Using a FSS-enabled CA, certificates are
signed using the (possibly one-time) private key, and only released
after the private key is updated. Hence, subsequent compromise of
the CA root key only affects those certificates issued at or after the
point of compromise. The amount of disruption is bounded by the
number of potentially compromised certificates, not by the num-
ber of certificates issued under the compromised key. For the elec-
tronic checkbook application, implemented with an FSS scheme, in
the event of a compromise the account holder tells the bank which
version of the private key was lost. Every prior signature could
be processed as normal, and signatures associated with current and
future private keys systematically voided. In this case compromise
prevents future use of the checkbook, but does not put past checks
under a cloud of suspicion.

Many other applications can potentially be enabled by FSS se-
mantics. For example, an application can limit the monetary amount
of data signed by a particular key. Once the cumulative value of
signed transactions meets a threshold, the singing key is updated.
This can be used as a one-time credit card (e.g., phone card). Bet-
ting slips, receipts, airline tickets, legal archives, and time-stamping
services can also benefit from the use of FSS services.

One can view FSS as check-pointing a stream of signatures.
Whether a key is updated after every signature, once a day, or under
any other policy is a trade-off between performance (e.g., cost of
the update operation) and security (e.g., vulnerability to forgery).
Once an update has occurred, it is infeasible for previously check-
pointed signatures to later be forged. Assuming she conforms to
the algorithm, even the signer cannot forge past signatures. This
latter property may enable novel applications. For example, signer
forgery prevention mechanisms would be of great value in the re-
tention of legally binding documents (e.g., official billing records).

�

This assumes that the update operation is able to permanently de-
stroy all copies of the old version of the key. This assumption is
provably necessary for any FSS method. Section 4.2.2 examines
the practical impact of this requirement.

Our Contributions
Forward-secure signatures are a strictly stronger cryptographic con-
struction than traditional signatures: they provide all the properties
of traditional signatures as well as the new forward-security prop-
erty to protect against key exposure. Due to this, it is expected
that once implemented there will be some (possibly significant)
decrease in performance for FSS compared to traditional signa-
tures. Previous studies of forward-secure signatures have evalu-
ated the design and asymptotic performance of these cryptographic
constructions, but have not considered their practical application.
This paper develops an understanding of the real world perfor-
mance characteristics through a comprehensive empirical study of
forward-secure signatures.

One of the challenges of performing this type of study is the lack
of systematic metrics for evaluating the inherent tradeoffs of sig-
nature systems. Instead of simply looking at individual operation
costs in our study, as one of the contributions of this work we de-
velop an evaluation metric in which operation costs are amortized
based on expected use over the lifetime of the key(s). We believe
this new usage-based metric is more robust because it encompasses
the application and environment, not just cycle consumption of ba-
sic operations.

Using this metric we perform an empirical study of the perfor-
mance of several forward-secure signature schemes. Our study re-
veals several notable results pertaining to the performance of these
schemes, and of traditional non-forward-secure signature schemes
as well. We begin with an example result that highlights the ability
of our methodology to capture many different applications and en-
vironments in its analysis. When using traditional signature schemes,
there is a somewhat common belief that, due to very efficient ver-
ification, RSA [34] is the best algorithm to use in all situations.
Our analysis dispels this belief, showing that while for many ap-
plications this is true, and RSA is up to fourteen times faster than
other algorithms, it is not always true. For other environments,
which we show later represent real-world applications, RSA per-
forms up to twenty-four times slower than another signature al-
gorithm, ECDSA [3]. The metric allows us to not only see which
algorithm is most efficient at a particular point, but also to visualize
performance over the entire space of environments.

The primary result of our study, and a major contribution of this
paper, is an accurate view of the performance characteristics of dif-
ferent forward-secure signature constructions and parameters for
different applications. We show that no single construction per-
forms well in all situations, and that knowing the performance char-
acteristics of different schemes is critical in avoiding potentially
enormous overheads. Our results show that for many applications
the overhead of FSS over traditional signature schemes (using the
optimal schemes of each type for the application) is usually near
zero, and even in the worst case is between a factor of two and four.
We also show that the optimal scheme is application dependent: the
optimal configuration for one application can be several orders of
magnitude worse than other configurations for other applications.

Finally, another contribution of this work is the reference imple-
mentation of forward-secure signature schemes used in our study.
This library uses the common OpenSSL [36] cryptographic library
and provides an API closely based on OpenSSL’s own API for non-
forward-secure signatures. It utilizes all base signature schemes
provided by OpenSSL and currently contains five forward-secure
schemes. This library will be released under an open-source license
and available for download by anyone interested in incorporating
forward-secure signatures in their applications.

An outline for the remainder of the paper follows. In the next
section we overview of FSS schemes and their theoretical (asymp-



totic) performance characteristics. We then present our empirical
study in the following section, exploring the actual performance of
these schemes. Section 4 describes the reference implementation of
FSS used in our study, as well as several unexpected issues which
arose during its development. Finally, we conclude and summarize
our findings and present ideas on future work.

2. FORWARD-SECURE SIGNATURES
In this section we survey known forward-secure signature meth-

ods, together with their salient security and efficiency properties,
as theoretically analyzed by the authors of each method. We par-
ticularly focus on the schemes that will be evaluated in this work,
which include most of the best methods known to date. Finally, we
touch upon other related work.

2.1 Some Simple Solutions
Consider the following trivial forward-secure signature scheme,

with a parameter
�

denoting the total number of time periods over
which the scheme is supposed to operate. Starting from any stan-
dard signature scheme as a base, the signer runs the key generation
protocol

�
times, obtaining

�
secret/public key pairs�����

����� � �
	������� ������� ��� ��� 	 . The public key is now set to ������ � � ��������� ��� 	 , while the secret key (for the first time period) con-
sists of ��� � � �����

� ������ ��� � 	 . For each time period ������� �
,

signing and verifying are performed using the base scheme relative
to the secret key

����
(for signing) and public key � ��� (for verify-

ing). To update from time period � to �! "� , the signer simply erases
the key

�����
(which is no longer necessary).

Clearly, this scheme is secure as long as the underlying standard
signature scheme is. Signature and verification time, as well as
signature size, are very efficient in this scheme – the same as in
the underlying base scheme. Still, this trivial scheme is clearly
impractical, because it requires public and secret key sizes which
are linear in

�
, the number of periods the schemes can be used.

Some improvements to the above scheme were suggested al-
ready in the first works in the area [2, 4, 26]. For example, Krawczyk [26]
proposes a method where the total storage of the signer is still lin-
ear in

�
, but the public key and the secret key themselves are both

short (proportional to the security parameter). That is, the bulk of
the keying material stored is needed by the signer, but even if com-
promised by an adversary, forgery is still not possible.

While these improvements are better than the trivial scheme above,
for a practical scheme it is desirable not to have such a linear de-
pendence on

�
, in any of the parameters. We further discuss the

efficiency requirements below.

2.2 Efficiency Requirements
What are the efficiency requirements when designing a forward-

secure signature scheme? We cannot hope to beat standard signa-
ture schemes, since forward-secure signature schemes are a strictly
stronger construct. Thus, we would like a forward-secure signature
scheme to perform not much worse than a standard one, in terms
of time (for key generation, signing and verifying), and space (key
size and signature size). In particular, it is not desirable for these
parameters to grow with the number of time periods

�
.

One might be tempted to require that there is no dependency
whatsoever on

�
. But note that, as pointed out by [27], signature

schemes already depend on some security parameters, which must
be super-logarithmic in

�
. If this were not the case, by the time pe-

riod
�

is reached, the scheme could have been broken by exhaustive
search. Therefore, a logarithmic asymptotic dependence on

�
is no

worse (and possibly better) than the required linear dependence on
the security parameters.

Indeed, to evaluate the performance of a forward-secure sig-
nature scheme, it is necessary to examine the actual performance
more closely. The only type of analysis of forward-secure schemes
to date involves a theoretical analysis, estimating the asymptotic
performance of the schemes as a function of

�
and two security pa-

rameters (representing the key-sizes for private-key operations such
as hashing, and public-key operations such as RSA signatures). In
this work we suggest the first experimental performance evaluation,
for the forward-secure signatures described below.

We next turn to reviewing the main features of known forward-
secure signature schemes. These can be divided into two main cat-
egories, as detailed below.

2.3 Generic Provably-Secure Schemes
This category includes schemes that can use any arbitrary base

signature scheme, and their security is provable as long as the base
signature scheme is secure. For example, the trivial solutions dis-
cussed above fall under this category. Efficient generic provably
secure schemes (without a linear dependence on

�
) are the ones

implemented in this work, and surveyed below (we refer the reader
to the original papers for more details on the schemes).

Bellare-Miner Tree
Bellare and Miner [4] suggest a forward-secure scheme based on
a binary certification tree. Roughly speaking, a binary tree is con-
structed with

�
leaves, where each leaf corresponds to a time pe-

riod. An instance ((secret-key,public-key) pair) of a base (standard)
signature scheme is associated with each node in the tree. The pub-
lic key of the forward-secure scheme is the public key of the root,
and the secret key consists of all the base key pairs associated with
nodes on the path from the root to the current time period. A sig-
nature for time period � consists of a certification chain from the
appropriate leaf to root, where the leaf key is used to sign the ac-
tual message, and each node is used to sign the public key of its
child. Verification verifies each signature on the chain, up to the
top level (root) signature which is verified against the public key.

In this scheme, all performance parameters (size and time) are�$#&%(' �)� �*%�	,+ ��-/.10 � 	 , where
� �2% are the security parameters (the ac-

tual dependence on
� �*% depends on the performance of the under-

lying base scheme). As explained above, this logarithmic depen-
dence on

�
is very good, and, at least from a theoretical point of

view, this scheme is satisfactory. Still, this is not competitive with
standard signature schemes, as signing a message involves

-/.10 �
signatures (which are expensive public-key operations) in the un-
derlying base scheme. Allowing a high number of possible time
periods

�
, this factor can be prohibitive. On the other hand, key

update is very efficient, roughly consisting of two (amortized) key
generations in the underlying base scheme (since each key in the
tree is only generated once).

Product Construction
Malkin, Micciancio, and Miner [27] suggest two composition op-
erations, taking any two forward-secure schemes with

�
� � �43 time

periods, respectively,2 and constructing a new forward-secure sig-
nature scheme with more time periods. These constructions are
suggested as tools in constructing flexible forward-secure scheme
by applying them repeatedly in different combinations, possibly
with other known schemes. The constructions are also used toward
the main [27] scheme.

Their first composition operation is the product construction, re-
sulting in a scheme with

�
�65 � 3 periods. Here, an instance of the3

Note that a standard signature scheme can be viewed as a forward-
secure scheme with one time period.



first scheme (with
�

� periods) is generated, and for each time pe-
riod, a new instance of the second scheme (with

� 3
periods) is gen-

erated underneath it. The public key is the public key of the top
(first) scheme, and a signature operation signs the message with
the key of the second scheme (in that time period), and signs the
public key of the second scheme with the key of the first scheme.

The product construction can be viewed as making explicit the
main building block that was already used by the Bellare-Miner tree
(as well as Anderson’s original scheme [2], and other certification
based constructions). Indeed, when iterated recursively, starting
from any standard base scheme, the product construction results in
a scheme which is essentially the same as the Bellare-Miner tree. In
this work we evaluate both the Bellare-Miner tree (iterated product
construction), and an application of the product construction on two
schemes resulting from iterated sum construction, described below.

Sum and Iterated Sum Constructions
The second composition operation suggested in [27] is the sum
construction, combining two schemes with

�
� � �43 time periods, re-

spectively, to a scheme with
�

�  � 3 time periods. Here, an instance
of each of the two schemes is generated, and the public key is the
hash of both public keys. A signature consists of the two public
keys, and a signature of the message according to the first (if it is
within the first

�
� time periods), or the second (if it is within the

next
� 3

periods). Taking the secret key to consist of the (secret and
public) keys of both schemes would allow the right functionality
for the signer, but result in an inefficient key size. Instead, a more
efficient way to generate and maintain the secret keys is proposed,
and the reader is referred to [27] for details.

When iterated recursively, starting from any standard base scheme,
the iterated sum construction results in a binary tree, with each time
period associated to a leaf, similar to the Bellare-Miner tree. How-
ever, each node in the tree is the hash of its two children (in the
same spirit of Merkle trees [28]), rather than being used to sign its
children. This means that signing (and verifying) is much more ef-
ficient, as

- .&0 �
hashes (private key operations) are extremely fast

to compute, compared with
-/.10 �

signatures, which are slow. On
the other hand, key update is much slower here, since the signer
must generate all the public keys in a bottom-up fashion, in order
to compute their hash which is the public key; since the signer does
not keep all keys (or else the key size would be very large), re-
generation of keys is necessary during the life time of the scheme,
resulting in (amortized)

- .&0 �
key generations per update. In con-

trast, in the Bellare-Miner scheme, the tree is built top down, with
new keys generated only when needed, resulting in 2 key genera-
tions per update.

In sum, the asymptotic performance of the iterated sum construc-
tion is also �$#&%(' �)� �,%�	 -/.10 � ; when explored more carefully, signing
and verifying is extremely efficient, consisting of one signature in
the base scheme plus

- .&0 �
hashes, while key generation and up-

dates take about
-/.10 �

key generations of the base scheme, which
may be slow ([27] suggests that this may be improved using one-
time signatures[13, 7]).

MMM Tree
The main scheme suggested in [27] is one using both the sum and
product constructions, starting from any underlying base signature
schemes. The idea is to use an iterated sum construction with a
polynomial number of time periods, where for each time period,
another iterated sum construction is attached, using the product
construction. The number of periods for each iterated sum con-
struction on the lower level keeps increasing as time progresses,
starting from a 2-period scheme attached to the first time period of
the top level, then a 4-period scheme attached to the second period,

an 8-period scheme for the third period, and so on.
The MMM construction achieves a new feature that previous

schemes did not, namely that the maximal number of time peri-
ods,

�
, need not be fixed in advance, and thus does not influence

the performance. Rather, more time periods are added as needed,
for an arbitrarily large polynomial number of time periods. The
performance slowly degrades, proportional to

-/.&0 �
, where

�
is the

number of time periods elapsed so far.
In terms of performance, signing consists of two signatures plus-/.10 �

hashes in the underlying base scheme (which is very efficient),
while key update consists of

-/.10 �
key generations in the base

scheme (which may be expensive). The main performance advan-
tage of [27], namely that of efficient signing and verifying, is due
to the fact that the iterated sum construction is prominently used.
The use of product construction may in principle make MMM a
little less efficient than iterated sum, but it allows for unbounded
number of time periods, which also makes the performance better,
as it only depends on the number of time periods elapsed so far, and
not on the maximum

�
. This is what the theoretical analysis of the

schemes indicates. An experimental performance analysis is con-
ducted in this paper, and compares MMM, iterated sum, product,
and Bellare-Miner tree in different settings.

2.4 Specific, Random Oracle Based Schemes
Another category of forward-secure schemes consists of con-

structions built upon specific standard signature schemes, which in
turn (in all the known schemes) are built from specific identifica-
tion protocols using the Fiat-Shamir methodology [17]. These FSS
schemes (as well as the underlying standard signatures) are proven
secure in the random-oracle model.

The first proposed FSS in this category are the main scheme of
Bellare and Miner [4] (based on the Ong-Schnorr [32] scheme), op-
timizing key and signature sizes, followed by a scheme of Abdalla
and Reyzin [1], which improves the time parameters at the expense
of longer key and signature sizes. However, these schemes have
signing and verification times which are linear in

�
.

Itkis and Reyzin [21] propose a FSS (based on the
Guillou-Quisquater [18] scheme), which does not have linear de-
pendence on

�
in any of its parameters, and optimized signing and

verifying time. In particular, signing and verifying in their FSS
scheme is comparable to (about twice as expensive as) the underly-
ing [18] standard signature scheme.

Kozlov and Reyzin [25] propose a FSS with a very fast update
operation, which significantly improves upon all other forward-
secure signatures (generic or specific). However, the performance
of other parameters (such as signing and verifying time) are not as
good for this scheme, and so it is only useful for specific applica-
tions where update time is the important parameter to optimize.

2.5 Comparison
The main advantage of the generic schemes is that they have

provable security (assuming any signature schemes exist, or equiva-
lently, assuming one-way functions exist). This is in contrast to the
specific schemes which can only be proven secure in the random-
oracle model, a weakness they inherit from the underlying standard
signatures they are based on. Proven security in the random-oracle
model is very valuable as a heuristic for security, but provides a sig-
nificantly weaker security guarantee. In particular, it does not even
guarantee the existence of an instantiation of the random oracle for
which the scheme is secure [8].

Another advantage of generic schemes stems from the fact that
they can be used with any underlying base signature schemes. This
again provides a stronger security guarantee (as it requires a weaker



assumption – any implementation of one-way functions suffices).
Furthermore, this allows for flexibility in optimizing and trading
off the time and space parameters of the FSS scheme, by using base
schemes with different performance characteristics, rather than be-
ing bound to the properties of a specific base scheme. Finally, the
generic MMM scheme has the advantage of an unbounded number
of time periods, as discussed above.

The main advantage of the specific schemes, is that they achieve
better dependence on

�
and the security parameters in some of

their time or space measures. For example, the main scheme of
Bellare and Miner [4] achieves key and signature sizes which are
completely independent of

�
. Moreover, the performance of each

of these specific schemes is typically significantly better, at least
in some of the parameters, than the best generic schemes that were
known at the time the specific scheme was introduced. In particu-
lar, Itkis and Reyzin [21] were the first to propose a FSS scheme
with signing and verifying which is comparable to standard signa-
ture schemes, while maintaining reasonably good performance (in
particular, not linearly dependent on

�
) in all other time and space

parameters. (The MMM generic scheme described above, which
also achieves this, was proposed later.)

Finally, specific schemes, and in particular that of [21], were the
basis for several extensions to other models [16, 22], as well as the
fast update FSS scheme of [25].

Comparing a generic scheme with a specific scheme in terms
of asymptotic performance (as done by the authors of the various
schemes), is difficult. This is because the different instantiations of
the generic scheme give different results, typically trading off im-
provements in different parameters. For a most informative general
comparison, it is probably best to instantiate the generic scheme
with the same base signature scheme as the specific scheme un-
der consideration. For a comparison geared toward a particular ap-
plication, the generic scheme should be instantiated with the best
possible base scheme for that application.

With this in mind, the asymptotic performance of the best (con-
sidering all parameters) specific scheme [21] and the best generic
scheme [27] are quite close (and neither is better than the other in
all parameters simultaneously). For both, the theoretical analysis
predicts that they should be feasible (and our experimental results
in Section 3 confirms this).

2.6 Schemes Implemented in This Work
In this paper we focus on the generic Bellare-Miner tree, iterated

sum, product, and MMM constructions. In several places we refer
to these schemes by short names, BMTree, ISum, Prod, and MMM
respectively. We chose the generic schemes due to the advantages
outlined above. Moreover, the modular nature of these tree based
constructions, together with the possibility of using different stan-
dard signatures as a base, provides much flexibility in constructing
the final scheme. It is thus important to evaluate performance of
particular choices in order to determine the feasibility and appli-
cability of forward-secure signatures for desired applications. We
note that it may also be interesting to evaluate performance of com-
bined specific and generic schemes, e.g., applying the sum con-
struction on top of the Itkis-Reyzin construction from [21] for a
smaller size.

2.7 Other Related Cryptographic Primitives
Forward-security was first considered for key-exchange proto-

cols [19, 14]. Forward-security for private-key primitives (pseudo-
random generators, authentication, and encryption) was proposed
in [5], and for public-key encryption in [9].

Several extended models for forward-secure signatures have been

proposed. These include forward-secure group signature schemes [35],
key insulated signatures [15, 16], and intrusion resilient signature
schemes [22], combining the benefits of forward-secure and key-
insulated signatures. In particular, intrusion resilient schemes have
the advantage that if the key is exposed for some number of time
periods, signatures in all other time periods (not just the past ones)
are still valid. This is achieved by distributing the signer to two
modules, one for signing, and one is a base which is needed every
time an update is performed. Security for all compromised time
periods is maintained as long as the base and signer modules are
not both compromised in the same time period (if they are, then
only forward-security is guaranteed). Studying the feasibility of
this distributed model is an interesting problem for future work.

3. PERFORMANCE EVALUATION
Balancing the tradeoffs of digital signature performance in order

to select an optimal set of parameters is not always a straightfor-
ward task. In this section, we present several metrics for formal-
izing these tradeoffs between different aspects of signature perfor-
mance for both traditional and forward-secure signature schemes.
To our knowledge, no previous work has utilized such a technique
capable of evaluating signature schemes’ performance over the en-
tire spectrum of uses. We then evaluate the performance of sig-
nature schemes with regard to these metrics using benchmarks of
several of the FSS schemes introduced in the previous section, con-
sider where specific uses of digital signatures lie in the space de-
fined by our metrics, and explore which FSS configurations are op-
timal for these situations.

3.1 Performance Metrics
Key generation (or update) time, signature time, and verification

time are all indicators of a signature scheme’s performance. How-
ever, no one aspect alone is enough to judge whether one signature
scheme is better than another for all situations. Many earlier per-
formance comparisons take an informal approach at resolving this
problem by first looking at a specific situation and then picking
which operation seems to be most important for it [38]. This works
well for simple situations but does not help when it is unclear which
operation is most important or in seeing the entire picture with re-
gards to performance tradeoffs.

Instead of taking a similar approach for our analysis, we look
at what characteristics make a given environment using signatures
unique, and how to express this as a set of parameters. We de-
fine several metrics using these parameters which compute a sin-
gle amortized cost for the performance, allowing us to make direct
comparisons between schemes for any given situation. Using this
evaluation framework, we are able to not only look at specific cases
as previous performance studies have done, but also at how the per-
formance changes over the entire range of parameters, and how
different signature schemes perform in this broader picture.

3.1.1 Traditional Signature Schemes
When examining common uses of digital signatures, we see that

what makes each situation unique is the frequency at which each
of the three basic operations must be performed. A Certificate Au-
thority (CA), for example, will generate a single key. It will then
use that key to produce hundreds or thousands of signatures on cer-
tificates, and each of those signatures may be verified thousands of
times as the certificates are used. An electronic checkbook system,
in contrast, will require a key generation for every checkbook is-
sued. Each checkbook (key) can then produce hundreds of checks
(signatures), each of which will likely only be verified once, when
“cashed” at the issuing bank. Below, we express these relationships



between key generation, signature, and verification rates ( � , � , and�
respectively) through two ratios, � � and � 3 . These ratios allow

us to combine the individual costs ( ��� , ��� , and �	� respectively)
proportionally to arrive at a single cost for a given scheme given a
particular mix of key generations, signatures and verifications.

We begin by examining the tradeoff in the cost incurred by the
signer versus the cost incurred by the verifier(s). One way to ex-
press both the signer’s and verifier’s costs in a single value is to
“tax” each verification for its share of the work performed by the
signer in producing the signature. Looking at the scenario of a
CA as described in the previous paragraph, we see that including a
share of the signing cost adds very little to the cost of any one ver-
ification since there are so many verifications. On the other hand,
another common use for signatures is during the session negotia-
tion of protocols such as SSL [12]. Here, a signature is produced,
verified once, and then forgotten. The entire cost of the signature’s
generation is now associated with that single verification as op-
posed to thousands of verifications as before, and its cost is far
more important to the overall performance. In the middle of these
two extremes lie usages such as digitally signing contracts. Here,
the cost of signing may be spread out over a few verifications, re-
ducing its impact but not making it possible to ignore it altogether.
� � and the metric 
 � express this relationship formally. � � is

the ratio between signatures and verifications for the workload in
question. 
 � produces a weighted verification cost that incorpo-
rates an equal share of the cost of signing into each verification.

� � �
�

� (1)


 � � ���6 �
� �

5 ��� (2)

� 3 � �
� (3)


 3 � � �  �
� 3

5 � � (4)


�� � � �  �
� �

5 � �  �
� � � 3

5 � � (5)

On the signer’s side, a similar tradeoff exists between the “of-
fline” cost of key generation, and the “online” cost of generating
signatures. Here, it is useful to look at amortizing the shared key
generation costs over each signature produced. A busy SSL server
may receive millions of connections over the lifetime of its private
key. If each of these secure connections requires a signature to be
produced, then the share of key generation that should be attributed
to each signature approaches zero. On the opposite end of the spec-
trum, if the use of one-time signatures [13, 7] is required, then by
definition each key may only be used to produce a single signature
and then must be destroyed. The second ratio and metric � 3 and

 3

express this relationship.
Neither of these metrics alone is sufficient, however. The cost of

a signature used in 
 � must take into account the amortized key
generation costs from 
 3

in order to accurately reflect the total
cost. We define one final metric, 
 � , which combines the previ-
ous two metrics to give a weighted cost of verification incorporat-
ing both the balance between verifier and signer and the balance
between the signer’s “online” (signing) and “offline” (key genera-
tion) costs. This metric is parameterized by both � � and � 3 , and
gives us a single value with which to compare signature schemes.

3.1.2 Forward-Secure Signature Schemes
Turning now to forward-secure signature schemes, a fourth op-

eration, key update, is added to the three operations present in tra-
ditional schemes. Like key generation, update is an “offline” cost,

Short-Term Security
RSA DSA ECDSA
1024 1024 t163k1

keygen ( �� ) 352 5,500 3.68
sign ( �	� ) 10.5 4.36 3.75

verify ( ��� ) 0.540 5.35 7.61

Long-Term Security
RSA DSA ECDSA
1536 1536 t223k1

keygen ( �� ) 862 58,500 6.72
sign ( �	� ) 27.6 8.78 6.81

verify ( ��� ) 1.03 11.1 13.6

Table 1: Base signature scheme performance, in milliseconds.

necessary before a signature can be performed but not actually part
of the signing process. Key generation can be viewed as a special
case of update, going from a null private key to the initial private
key for period 0. Therefore, we can combine key generation and
update into a single parameter � (with cost �� ), and use this in
place of � and � � in our metrics. 
 � , which was not influenced
by � , remains the same. The modified � 3 , 
 3

, � � , and 
 � we
denote with a star:

���3 � �
� (6)


��3 � � �  �
� �3

5 � � (7)


 �� � � �  �
� �

5 � �  �
� � � �3

5 � � (8)

The number of signatures per key generation ( � 3 ) still has im-
portance with forward-secure schemes, but at a higher level than
what these metrics are designed to measure. For FSS (as well as
traditional) signature schemes, � 3 also expresses the administra-
tive overhead of the key for certifying and distributing the public
key. As this cost is highly situation dependent we do not attempt to
quantify it, but simply note that for both traditional and forward-
secure schemes, a higher value of � 3 indicates that the cost of
making the public key known and trusted can be amortized.

3.2 Experimental Setup
Having constructed a framework for comparing the performance

of the signature schemes implemented in this paper, the next step
in our evaluation is to fill in the needed values for ��� , ��� , ��� , and
� � . We use a simple micro-benchmark built with libfss called
fssbench to measure these costs. For each configuration, fss-
bench times the initial generation of a combined public/private
key followed by the three periodic operations during each period
of the private key’s lifetime.3 This is repeated with a different ini-
tial random seed used in key generation a total of ten times for each
configuration. The results over all ten runs are averaged, and the re-
sults for multi-period operations are averaged again over the range
of periods examined in order to provide a single average cost for
each operation. For example, when comparing the performance for
a situation requiring a maximum period of 512, only the first 512
updates of a 65535 period key would be included in the averages.
Because of this, for keys with very large maximum periods we are
able to stop benchmarking once this maximum period is reached.

�
fssbench measures a great deal more; for conciseness, we limit

our discussion to those features of fssbench used in this study.



 0

 5

 10

 15

 20

 25

 30

 1  10  100  1000  10000

C
os

t (
m

s)

Verifications per Signature

RSA-1536
DSA-1536

ECDSA-t233k1

(a) 
 � .

 1

 10

 100

 1000

 10000

 100000

 1  10  100  1000  10000

C
os

t (
m

s)

Signatures per Key Generation

RSA-1536
DSA-1536

ECDSA-t233k1

(b) 
 3
.

Figure 1: Performance of long-term traditional signature
schemes.

We benchmark four of the generic FSS constructions described
in Section 2: Bellare-Miner Tree (BMTree), Iterated Sum (ISum),
Product (Prod), and MMM. In addition, we consider three base al-
gorithms: RSA, DSA [29], and Elliptic Curve DSA (ECDSA).

The benchmarks were performed on a 1.5GHz Pentium 4 with
1GB of memory running FreeBSD 4.8. A development snapshot
of OpenSSL 0.9.8 from April, 2003 was used for the cryptographic
support library.4 Both libfss and OpenSSL were built with com-
piler optimizations enabled.

3.3 Microbenchmark Results

3.3.1 Base Algorithm Performance
We begin with an examination of the traditional signature schemes

in order to determine which FSS configurations may be of par-
ticular interest to examine, as well as to introduce our metrics in
a simplified environment. As mentioned, the OpenSSL crypto-
graphic library used by libfss provides the three currently FIPS-
approved signature schemes as potential bases: RSA, DSA, and
ECDSA. Earlier forward-secure signature papers have mentioned
several other signature algorithms of potential use for constructing
forward-secure keys, including Guilleau-Quesquiter [18] and Fiat-

�
Certain desired features of OpenSSL such as AES and full Elliptic

Curve Cryptography support were not available in released versions
of OpenSSL at the time of these experiments.

RSA-1536 DSA-1536 ECDSA-t233k1

 1

 10

 100

 1000

 10000

Signatures per Key Generation  1
 10

 100
 1000

 10000 Verifications per Signature

 1

 10

 100

 1000

 10000

 100000

Cost (ms)

(a) 
�� .

RSA-1536 DSA-1536 ECDSA-t233k1

 1

 10

 100

 1000

 10000

Signatures per Key Generation

 1

 10

 100

 1000

 10000 Verifications per Signature

(b) Lowest-cost scheme for 
 � .

Figure 2: Performance of long-term traditional signature
schemes (cont.).

Shamir [17]. We do not include these schemes in our comparison
due to their limited use in existing real-world cryptosystems and
lack of acceptance by standards organizations at the present time
when compared to RSA, DSA, and ECDSA.

Table 1 summarizes the key generation, signing and verification
times for the three base algorithms in ‘short-term’ and ‘long-term’
security strengths, as measured by fssbench. The fastest re-
sult for each operation is in bold. Short-term security represents a
keysize believed to be safe against brute-force attacks today, while
long-term security represents a keysize believed to be safe for the
next several decades [31]. There is no direct mapping between
ECDSA group size and RSA or DSA key size, but a group of ap-
proximately the same strength as DSA or RSA given the current
best known attacks on each scheme was chosen based on the rec-
ommendations in [10]; Koblitz curves were used due to better per-
formance compared to other elliptic curves.

Using the costs in Table 1, we are able to plot the curves for 
 �

and 
 3
for each of the signature schemes. Fig. 1 shows 
 � and


 3
for the long-term keys. Both graphs have a logarithmic � -axis,

and 
 3
has a logarithmic ' -axis as well. The plots start with a 1

to 1 ratio on the � -axis at the origin. The results for short-term keys
are very similar, and are omitted for brevity.

Combining these two metrics as described above, we get Fig. 2(a)
showing the three-dimensional surfaces defined by 
 � . Since we
are concerned with the lowest of these surfaces, which is often ob-
scured by the less efficient schemes, we also show the “view from



Short-Term Security
BMTree 256 ISum 256 Prod 16*16 MMM 255 BMTree 256 ISum 256 Prod 16*16 MMM 255

RSA RSA RSA RSA ECDSA ECDSA ECDSA ECDSA
keygen 5,630 83,300 10,500 2,980 123 949 124 40.8

sign ( � � ) 10.5 10.4 10.5 10.5 3.75 3.74 3.73 3.79
verify ( ��� ) 4.47 0.576 1.08 1.08 66.7 7.45 14.9 14.9

update 635 1,280 959 1,310 14.4 14.8 11.5 15.1
gen+up ( � � ) 654 1,610 997 1,320 14.9 18.5 12.0 15.2

Table 2: Forward-secure signature scheme performance (first 255 periods), in milliseconds.

below” in Fig. 2(b). This second graph must be interpreted with
care, as it does not depict how much more efficient the lowest
scheme may be compared to other schemes. In some cases, two
schemes will be nearly tangent to one another when they intersect,
in which case there is little difference in picking one scheme or the
other until one moves a significant distance from the intersection.
Other times, as is the case in Fig. 2(b), the two surfaces intersect at
a steeper angle, causing larger differences between schemes when
moving away from the intersection.

From Fig. 2, we can clearly see the areas where particular schemes
are most efficient. When both � � and � 3 are low, ECDSA per-
forms the best due to significantly cheaper key generation. As � �

and � 3 increase, the amortized costs of key generation and signing
approach zero, and the performance of each scheme converges to
the cost of verification alone.

Looking at the relationship to our illustrative examples from Sec-
tion 3.1, we see that the CA would fall solidly in the left portion
of Fig. 2(b), where RSA is the dominant algorithm. For the SSL
server, ECDSA’s lower signing cost compared to RSA makes it a
better choice. The case of digitally signing documents lies toward
in the border region between RSA and ECDSA, with the popular-
ity of the signer (i.e. how many signatures they produce over their
key’s lifetime) being the determinant for which scheme to chose.
As more signatures are generated, RSA becomes the preferable al-
gorithm.

3.3.2 Forward-Secure Signature Performance
Continuing our analysis, we examine forward-secure signature

schemes in a similar manner. We assume for now that the maxi-
mum number of periods required from a key is a constant, deter-
mined by the usage much like the required key strength. Later in
this section we will explore the impact of relaxing this assumption.
Table 2 shows the results for one of these combinations, 255 and
256 period FSS keys using short-term security base scheme keys in
their construction. Each key is used for its first 255 periods. Other
cases with different base key strengths and maximum periods have
similar results, but are omitted due for brevity.


 � and 
 �3
We first graph 
 � and 
 �3 with the FSS scheme used being the
only variable, fixing the base scheme to be either RSA (Fig. 3) or
ECDSA (Fig. 4); as we saw in the previous subsection, DSA is
always at least an order of magnitude slower than the most efficient
scheme, and therefore we do not consider DSA in the remainder
of our study. This separation by base scheme allows the impact
on performance due to choice of FSS scheme to be isolated. Also
included in the graphs for reference when determining the overhead
of FSS is the non-forward-secure base scheme used.

In Fig. 1, we saw that for 
 � , RSA was the most efficient signa-
ture scheme and for 
 3

, ECDSA was the most efficient. We there-
fore begin our analysis of the forward-secure schemes by looking at

 � for RSA based schemes and 
 �3 for ECDSA based schemes.

As expected, in Fig. 3(a) the schemes separate into three clus-

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1  10  100  1000  10000

C
os

t (
m

s)

Verifications per Signature

RSA-1024
BMTree 256 RSA

ISum 256 RSA
Prod 256(16*16) RSA

MMM 255 RSA

(a) 
 � .

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000

C
os

t (
m

s)

Signatures per Update

RSA-1024
BMTree 256 RSA

ISum 256 RSA
Prod 256(16*16) RSA

MMM 255 RSA

(b) 
 �3 .

Figure 3: Performance of short-term forward-secure schemes
using RSA, with a maximum update period of 255.

ters, where within each cluster there is essentially no difference in
performance among schemes for 
 � . These clusters correspond
directly to the number of base signature verifications required by
each FSS scheme as described in Section 2. The signing costs for
all four FSS schemes are nearly identical to that of the base scheme,
and have no impact in differentiating schemes. The rate at which
the three groups stabilize to a nearly constant cost closely resem-
bles that of RSA, indicating that the FSS scheme itself has little
impact on this behavior.

Turning to 
 �3 for ECDSA-based schemes in Fig. 4(b), we see
that initially all four FSS schemes perform measurably worse than
ECDSA, ranging from twice as expensive for Product to three times
as expensive for Iterated Sum. Product, with the fastest update and
signing costs when using ECDSA, is the least expensive forward-
secure scheme for all values of � �3 ; meanwhile, Iterated Sum, whose
weakness is very expensive key generation and updating, is the



 0

 10

 20

 30

 40

 50

 60

 70

 80

 1  10  100  1000  10000

C
os

t (
m

s)

Verifications per Signature

ECDSA-t163k1
BMTree 256 ECDSA

ISum 256 ECDSA
Prod 256(16*16) ECDSA

MMM 255 ECDSA

(a) 
 � .

 1

 10

 100

 1  10  100  1000  10000

C
os

t (
m

s)

Signatures per Update

ECDSA-t163k1
BMTree 256 ECDSA

ISum 256 ECDSA
Prod 256(16*16) ECDSA

MMM 255 ECDSA

(b) 
 �3 .

Figure 4: Performance of short-term forward-secure schemes
using ECDSA, with a maximum update period of 255.

slowest. Unlike the results for 
 � , no clustering of schemes oc-
curs for the second metric. Instead, all four FSS schemes converge
to the cost of non-forward-secure ECDSA by 100 signatures per
update, after which point they are nearly indistinguishable. This
behavior can be attributed to the cost of signing being identical for
all four FSS schemes as well as the base scheme, and the update
cost being sufficiently amortized.

Because it is impossible to pick one base scheme to use when
generating and updating a FSS key and another for verification, it is
useful to look at the other half of the picture for each base scheme.
In Fig. 4(a), the same clustering seen in Fig. 3(a) is present, and
again the asymptotic behavior as the number of verifications in-
creases resembles that of ECDSA. As with 
 � , some of the dif-
ferences in Fig. 3(b) for 
 �3 also directly reflect those seen in
Fig. 1(b) between RSA and ECDSA. Unlike 
 � , however, the or-
dering of FSS schemes changes between Figs. 4(b) and 3(b), with
only Iterated Sum as the slowest remaining the same. The reason
for this is that while ECDSA has almost the same cost for key gen-
eration and signing, for RSA the first of these operations is much
more expensive. This switches the advantage from Product, which
has a number of key generations but only one signature, to Bellare-
Miner Tree, which has more signatures but fewer key generations
than any of the other schemes.


 ��
We now arrive at the heart of our analysis. Combining the results
for 
 � and 
 �3 , we see 
 �� for the forward-secure schemes plot-

RSA-1024
BMTree 256 RSA

ISum 256 RSA

Prod 256(16*16) RSA
MMM 255 RSA

 1

 10

 100

 1000

 10000

Signatures per Update  1
 10

 100
 1000

 10000 Verifications per Signature

 0.1

 1

 10

 100

 1000

 10000

Cost (ms)

(a) 
 �� .

BMTree 256 RSA
ISum 256 RSA

Prod 256(16*16) RSA
MMM 255 RSA

 1

 10

 100

 1000

 10000

Signatures per Update

 1

 10

 100

 1000

 10000 Verifications per Signature

(b) Lowest-cost FSS scheme for 
 �� .

Figure 5: Performance of short-term FSS schemes with 255 pe-
riods using RSA.

ted in Figs. 5, 6, and 7. We begin by continuing to examine the
results with the FSS scheme used being the only variable, and later,
we look at all eight configurations together in Fig. 7.

In Fig. 5, we see that at different times, Bellare-Miner Tree, It-
erated Sum, and Product each are the most efficient when using
RSA as the base scheme. Bellare-Miner Tree starts out as the most
efficient for low verification and signature frequencies due to the in-
creased impact � � has on overall performance in these situations.
As either � � or � �3 grows, Bellare-Miner Tree’s performance stays
nearly constant while the remaining algorithms quickly improve.
Product, which had good performance for both 
 � and 
 �3 , briefly
takes over as the lowest cost, with MMM and Iterated Sum approx-
imately one and a half times more expensive at the point where
Product and Bellare-Miner Tree are equal. Finally, as was the case
with traditional schemes, as the parameters grow larger, the results
of 
 � dominate. Iterated Sum, with its optimal � � , becomes the
scheme to use. At the crossover point, MMM, Iterated Sum, and
Product are all nearly identical in cost but Bellare-Miner Tree is
already an order of magnitude slower. At the transition between
Bellare-Miner Tree and Product, the difference between FSS and
RSA is the greatest. The maximum occurs at one verification per
signature and 100 signatures per update, where FSS is four times as
expensive as RSA. As the parameters continue to increase, the costs
decrease and stabilize with Iterated Sum and RSA having nearly
identical performance, MMM and Product half as fast, and Bellare-



ECDSA-t163k1
BMTree 256 ECDSA

ISum 256 ECDSA

Prod 256(16*16) ECDSA
MMM 255 ECDSA

 1

 10

 100

 1000

 10000

Signatures per Update  1
 10

 100
 1000

 10000 Verifications per Signature

 1

 10

 100

Cost (ms)

(a) 
 �� .

Figure 6: Performance of short-term FSS schemes with 255 pe-
riods using ECDSA.

Miner Tree significantly slower.
For Elliptic Curve DSA, the results are less interesting. Unlike

RSA, where � � is significantly greater than � � or � � , all three
costs are much closer to one another for ECDSA based configura-
tions. Therefore, even when � � and � �3 are small, the share of up-
date and signing for each verification never grows large enough to
outweigh the savings in Iterated Sum from having to perform fewer
base verifications. In Fig. 6, Iterated Sum is always the least expen-
sive scheme, and quickly converges to the same cost as ECDSA.
MMM and Product are almost indistinguishable from one another,
and both converge to twice the cost of Iterated Sum or ECDSA.
Bellare-Miner Tree is nearly constant in its cost for all values of
� � and � �3 , but that constant is orders of magnitude higher than
the cost of the rest of the schemes. The worst performance rela-
tive to ECDSA occurs initially, where the expensive key generation
leads to Iterated Sum costing twice as much as ECDSA.

Finally, we look at the complete picture with both ECDSA and
RSA as potential base schemes, seen in Fig. 7. As might be pre-
dicted from Fig. 2, when � � and � �3 are small, the ECDSA based
configurations are dominant in Fig. 7, while as either ratio grows
larger the RSA based configurations take over. The area over which
ECDSA based Iterated Sum is most efficient covers all of the RSA
Bellare-Miner Tree region of Fig. 5 and portions of the RSA Prod-
uct and RSA Iterated Sum regions. When � � is less than two,
ECDSA Iterated Sum is always the most efficient, which can be
seen on the right in Fig. 7(b). As was also the case when exam-
ining the base schemes alone, the intersection between RSA based
schemes and ECDSA based schemes occurs at a much greater slope
than the intersections among different RSA based schemes. It is at
this point where performance is worst, with RSA Product 2.6 times
as expensive as RSA.

We are now able to determine the optimal FSS configurations
for several applications described in Section 1. For the electronic
checkbook, each check will only be verified a limited number of
times, possibly as few as once by the user’s bank. In order to limit
her exposure to forged checks, it is also in the user’s best interest
to update her private key after writing a check. This describes a
scenario where both � � and � �3 are small. Iterated Sum using
ECDSA would be the optimal choice in this environment.

For the case of a Certificate Authority, as with traditional signa-
tures � � will be very large. � �3 , because the ratio is per update and
not per key, may no longer be as large as was the case with � 3 in

RSA-1024
ECDSA-t163k1

BMTree 256 RSA
ISum 256 RSA

Prod 256(16*16) RSA

MMM 255 RSA
BMTree 256 ECDSA

ISum 256 ECDSA
Prod 256(16*16) ECDSA

MMM 255 ECDSA

 1

 10

 100

 1000

 10000

Signatures per Update  1
 10

 100
 1000

 10000 Verifications per Signature

 0.1

 1

 10

 100

 1000

 10000

Cost (ms)

(a) 
 �� .

BMTree 256 RSA
ISum 256 RSA

Prod 256(16*16) RSA
MMM 255 RSA

BMTree 256 ECDSA
ISum 256 ECDSA

Prod 256(16*16) ECDSA
MMM 255 ECDSA

 1

 10

 100

 1000

 10000

Signatures per Update

 1
 10

 100
 1000

 10000 Verifications per Signature

(b) Lowest-cost FSS scheme for 
 �� .

Figure 7: Performance of short-term FSS schemes with 255 pe-
riods.

the traditional case. The optimal FSS configuration in this situa-
tion is most likely Iterated Sum with RSA keys, which has almost
identical verification time to RSA. It is possible that, if both � �

and � �3 are low (e.g. 100 and 5 respectively), the optimal scheme
will be Product using RSA instead. However, as we noted above in
our analysis of RSA based schemes alone, in this region all three
of MMM, Product, and Iterated Sum have nearly identical perfor-
mance, so Iterated Sum is the wiser choice in case predictions of
� � and � �3 are wrong.

The final example use of FSS presented is the signing of receipts
by an on-line merchant, with updates performed at the close of busi-
ness. Here, the number of verifications is very low, as in most cases
when there is nothing wrong with the order, the receipt will never
need verifying. � � is very low because of this. The number of
signatures, however, may be quite large if the store is busy. As with
the electronic checkbook, Iterated Sum using ECDSA is the best
choice for this situation.

Unknown Maximum Period
Up until this point, we have assumed that the maximum number
of periods needed for a forward-secure key is known exactly ahead
of time, and examined the performance of different schemes based
on this assumption. In many situations, however, the exact upper
limit on the number of periods required may not be known. If more
periods are required than provided by the private key, a new key



Max RSA RSA ECDSA ECDSA
Periods 1024 1536 t163k1 t233k1

256 4.47ms 8.60ms 66.7ms 123.4ms
512 5.00ms 9.53ms 74.0ms 137.1ms

4096 6.35ms 12.4ms 94.7ms 176.1ms

Table 3: Average � � for Bellare-Miner Tree FSS keys.

must be generated and certified, reducing some of the benefits of
FSS schemes over traditional signature schemes.

The most straightforward solution to this problem is to be conser-
vative when generating forward-secure keys, and specify a maxi-
mum period much larger than what is actually expected to be needed.
Depending on the forward-secure scheme used, however, this may
impact the performance for the expected range of periods signifi-
cantly, and may even impact the decision of what FSS configuration
to use. In order to evaluate this penalty we look at how the average
values of � � , � � , and � � change as the number of periods used in-
creases for keys of various maximum periods, and re-examine 
 ��
with these new costs.

The results for �	� are not very interesting, as the cost of signing
is completely dominated in all four FSS schemes by the single base
signature performed. Regardless of how many periods used or what
the maximum period of the key is, the cost of signing is the same
as the cost for the base algorithm signature.

For Iterated Sum, Product, and MMM, the same holds true for
the cost of verification. Similar to signing, all three of these schemes
require a fixed number of verifications regardless of the current pe-
riod or the maximum period. Bellare-Miner Tree, however, is de-
pendent on the maximum period (but not the current period) for
the number of base verifications it must perform, and therefore ���
is dependent as well. Table 3 shows the average verification cost
for the ten Bellare-Miner Tree configurations tested. As expected,
from doubling the maximum period while keeping the base scheme
fixed is almost exactly the cost of a single base verification.

The impact of maximum period on � � also depends on the scheme.
For MMM beyond the first thirty periods and for Bellare-Miner
Tree for all periods there is no real difference in performance be-
tween keys of different maximum periods. Iterated Sum and to a
lesser degree Product (because it contains Iterated Sum keys) are
logarithmically related to the period for the performance of � � .
For a situation requiring 255 periods of a key to be used, the cost of
using a 4096 period Iterated Sum key is 4 times greater than using a
256 period key. Product in comparison experiences only a 30-35%
slowdown in this situation.

Fig. 8 shows the results of computing 
 �� assuming 255 pe-
riods are used, but with keys having a maximum period of 4096
(or 65535 in the case of MMM). In the figure, the higher � � for
Iterated Sum can be seen by the much greater upward deflection
toward the origin for the two Iterated Sum surfaces compared to
Fig. 7. This increase in initial cost causes MMM and Product
(which have nearly identical initial costs) to become more efficient
than ECDSA Iterated Sum when � � and � �3 are less than 10, and
the point where RSA Iterated Sum becomes most efficient to move
out significantly compared to Fig. 7. The point where RSA Product
intersects ECDSA Iterated Sum also moves further away from the
origin due to the greater increase in � � for RSA based schemes
than ECDSA based schemes. As before, over much of the area
where Product is least expensive the remaining RSA schemes (ex-
cept Bellare-Miner Tree) are also nearly equal. This is the cause
of the noisy region in Fig. 8(b) where the most efficient scheme

RSA-1024
ECDSA-t163k1

BMTree 4096 RSA
ISum 4096 RSA

Prod 4096(64*64) RSA

MMM 65535 RSA
BMTree 4096 ECDSA

ISum 4096 ECDSA
Prod 4096(64*64) ECDSA

MMM 65535 ECDSA

 1

 10

 100

 1000

 10000

Signatures per Update  1
 10

 100
 1000

 10000 Verifications per Signature

 0.1

 1

 10

 100

 1000

 10000

Cost (ms)

(a) 
 �� .

BMTree 4096 RSA
ISum 4096 RSA

Prod 4096(64*64) RSA
MMM 65535 RSA

BMTree 4096 ECDSA
ISum 4096 ECDSA

Prod 4096(64*64) ECDSA
MMM 65535 ECDSA

 1

 10

 100

 1000

 10000

Signatures per Update

 1
 10

 100
 1000

 10000 Verifications per Signature

(b) Lowest-cost FSS scheme for 
 �� .

Figure 8: Performance of short-term FSS schemes with 4096
periods after 255 periods.

changes between several different schemes in a small area.
The impact of these changes in the behavior of FSS keys on their

use is minimal. For a CA, the position again lies either in the RSA
Iterated Sum region, or in the transitional region where all of the
RSA schemes except Bellare-Miner Tree are nearly equivalent. If
� �3 is less than 5, MMM or Product will likely be slightly faster
than Iterated Sum. For the merchant signing receipts, the number
of signatures per day (update) remains large enough that ECDSA
Iterated Sum is the best choice. The one example situation looked
at where the decision on which algorithm to use does change is in
the electronic checkbook application, assuming that the maximum
number of checks (periods) is not set in advance. In this situation,
ECDSA MMM or Product are both able to produce keys with very
large maximum periods but with little initial cost or increase to
update cost compared to ECDSA Iterated Sum.

In all, even without knowledge of the exact number of peri-
ods required the performance of the optimal FSS schemes remains
good when compared to the optimal traditional signature schemes.
The difference is greatest at the transition between ECDSA-based
schemes and RSA-based schemes once again, where FSS is 3.3
times more expensive than RSA alone. As the signatures per up-
date or verifications per signature grow, the FSS cost converges on
the traditional scheme’s cost as before and there is negligible over-
head to FSS.



4. FSS REFERENCE IMPLEMENTATION
This section considers server several interesting issues were en-

countered during the implementation of our forward-secure signa-
ture library. We consider several issues of practical importance
when implementing and subsequently using these constructs.

4.1 Design and Architecture
The libfss library is a C library providing a generic inter-

face to forward-secure signature operations as well as implementa-
tions of a number of FSS signature schemes. The library uses the
OpenSSL [36] cryptographic library to provide RSA, DSA, and
ECDSA implementations as well as other cryptographic support
functions such as hashing and random number generation. OpenSSL
is one of the most widely used open-source cryptographic imple-
mentations; it runs on almost all varieties of Unix-like operating
systems as well as Windows, MacOS, and many embedded devices.
By using OpenSSL for the core cryptographic operations, libfss
is able to take advantage of over a decade of development and tun-
ing for these elements (as Section 3 showed, performance is largely
determined by the performance of the base algorithm). For many
platforms, OpenSSL provides highly optimized assembly code im-
plementations of these critical functions. Another advantage to
OpenSSL is that it has recently added the ability to transparently
use cryptographic acceleration hardware when available, a feature
which libfss will be able to leverage when possible.

The API of libfss is modeled after EVP API used in OpenSSL
for encryption and signature operations. It is a generic API where
“key” and “signature” objects contain type information which is
used to select the correct implementation to use for operations such
as sign, verify, and update. This allows the application using the
library to place all code dealing with different signature algorithms
in a single place, when a key is initially generated, and the remain-
ing calls to functions are scheme-independent. By using an API
similar to OpenSSL’s, libfss can be used in existing programs
with little modification to the existing code.

The library currently contains implementations of five forward-
secure signature schemes as well as wrappers for the three built
in signature schemes that treat them as one-period forward-secure
schemes. The schemes implemented are the Tree scheme from [4]
and the Sum, Iterated Sum, Product, and MMM schemes from [27],
as well as RSA, DSA, and ECDSA.

4.2 Implementation Challenges

4.2.1 Deterministic Key and Signature Generation
For traditional signature schemes, being able to generate the same

key twice in practice is seen as a major security flaw. OpenSSL, as
well as many other cryptographic libraries, take steps to prevent a
user from accidentally doing this through misconfiguration on the
the pseudo-random number generator (PRNG) or similar mistakes.
For generic forward-secure constructions, those based off of the
Sum construction in particular, the ability to deterministicly gener-
ate a key multiple times given the same random seed is, however,
a necessity. This requirement for reproducibility also extends to
signature generation for schemes like DSA, where random num-
bers are used in signing as well. If signatures are not deterministic
then private keys for the Product and MMM schemes, for example,
cannot be made deterministic.

In OpenSSL key generation, the primality tests and other opera-
tions requiring random numbers draw directly from OpenSSL’s in-
ternal global entropy pool, which itself is typically filled from sys-
tem level sources of randomness [37]. Once initialized, OpenSSL’s
entropy pool cannot be reset to a known value, only updated with

additional entropy. For these reasons, there is no way to determin-
isticly generate a key in this architecture without completely re-
placing OpenSSL’s random number generator with one that can be
reset to a specific state. Because this global PRNG is used not just
by libfss but also potentially by the application itself through the
use of other OpenSSL functions, replacing the PRNG altogether is
not an acceptable design.

The solution taken by libfss is to incorporate the code from
OpenSSL for generating RSA, DSA, and ECDSA keys (as well as
DSA and ECDSA signatures) into libfss, and replacing any calls
to OpenSSL’s PRNG with calls to our own PRNG in the copies.
This internal PRNG is implemented using AES-128 in Counter
mode [30]. A seed provided to the function is used as the key for
AES, and random numbers are provided by the encrypted counter
output.

Although this deterministic key generation is required within
certain FSS schemes for correct operation, it would still be unwise
to expose it to users who could accidentally generate keys with in-
secure random seeds. For this reason the top level API does not
provide a way to specify the seed to be used, and instead gener-
ates a random seed from OpenSSL’s PRNG. Internally, when a key
or signature needs to be generated, the callback is used and it is
possible to specify a seed.

This need for repeatability also raises potential problems for the
use of hardware cryptographic accelerators with forward-secure sig-
nature schemes. Accelerators that perform entire large-scale oper-
ations (such as an entire key generation or signature) on-chip using
an internal random number generator would cause similar prob-
lems, and likely be unusable for these FSS constructions. On the
other hand, accelerators that only provide hardware assistance for
cryptographic building blocks such as modular exponentiation or
large number arithmetic, would cause no problems.

4.2.2 Secure Deletion of Sensitive Key Material
As previous works have shown, it is exceptionally difficult to se-

curely remove all traces of sensitive information from the numerous
locations it might reside [20, 11, 33]. The compiler can optimize
away “useless” instructions intended to clear memory before re-
leasing it. The operating system can page a block of memory out to
disk, leaving a copy on physical media until overwritten. Physical
devices (RAM, magnetic media) can permanently retrain traces of
data written to them, even after it is overwritten.

The same precautions and solutions used to protect traditional
private keys apply to forward-secure private keys. Keys should
never be written to permanent media without first being encrypted
using a symmetric encryption algorithm. Whenever sensitive key
material in memory is no longer needed, a special low-level ‘cleanse’
function which works around compiler optimizations should be
used. When available, encrypted swap or pining pages containing
private keys in memory should be used to prevent keys inadver-
tently being written to disk unencrypted. Forward-secure keys are
no less secure than traditional keys in these regards.

However, in addition to protecting the current key from acciden-
tal exposure, FSS implementations must also worry about how to
permanently and securely destroy old keying material during up-
date. For the copy in memory, the procedures in the previous para-
graph handle this as well. The complication arises with the other,
permanent, copies of the key, even when stored encrypted. Unless
the key used to encrypt it is destroyed (implying that each period
of a FSS key has a unique encryption key), an earlier private key
would be recoverable from disk. Because it is often difficult or im-
possible to completely erase data from disks [20], this can pose a
significant risk. Even worse, periodic backups, logging/journaling



filesystems, and other common features can all lead to multiple
copies of the encrypted key existing. For this reason, containing
even the encrypted key is important for ensuring the security of a
forward-secure scheme.

It is important to note, however, that this is no different than
when many short-lived traditional private keys are used instead of
FSS. By having many private keys to protect against exposure, both
solutions introduce the new problem of having many private keys
to securely manage.

4.2.3 Protecting Against Timing Attacks
A common problem when implementing cryptographic systems

is that even though the implementation itself may be correct and
secure against direct attacks, it may inadvertently be vulnerable to
side-channel attacks that can expose sensitive data in unexpected
ways. One common group of side-channel attacks signature schemes
often face are timing attacks [24, 23]. Timing attacks are possible
whenever an operation is performed in an automated and interac-
tive fashion, such as protocol negotiation or operations performed
by a smart card. By choosing specific inputs and measuring the
time between request and reply, it is possible for an attacker to in-
fer information about the private key that compromises security.

There are two main varieties of timing attacks that have been dis-
covered in the past: those inherent to the algorithm itself, and those
due to a particular implementation of the algorithm. We examine
the impact of each of these on libfss in turn.

The first class of timing attacks arise due to the fact that with
some algorithms, the amount of computation required for an opera-
tion varies significantly based on the input and private key together.
By carefully selecting inputs, an attacker can use this to determine
the private key a bit at a time [24]. The FSS schemes in libfss
are all of the generic type and do not perform any key dependent
operations themselves, so they are only vulnerable to these types
of attacks if the base scheme used is. For other FSS schemes de-
scribed in Section 2 (but not implemented in libfss currently)
that are complete cryptographic algorithms and not generic con-
structions, this type of attack may apply directly.

For functions that are dependent on the private key in their per-
formance, there are sometimes alternate ways of performing the
necessary computation that do not depend on the private key. RSA
“blinding” is an example of this, and libfss supports this tech-
nique to protect private keys using RSA as the base scheme. RSA
blinding uses a random number and splits the computation into two
parts each using that number. By doing so, any correlation between
private key and execution time is removed.

When it is not possible to redesign the algorithm to remove the
correlation between private key and execution time, another tech-
nique that increases the amount of work required by the attacker
is quantization [6]. Quantization works by padding the computa-
tion time until it is a multiple of a fixed quantum before returning
the result to the user. Unless the quantum is larger than the op-
eration could ever take, this counter-measure only adds noise to
the attacker’s measurements and does not provably remove the at-
tack [24]. Nonetheless, in practical terms it does significantly in-
crease the number of queries required.

To protect against these attacks, the FSS wrapper for RSA pro-
vides an option to enable a feature known as “blinding” that adds
a random element to the computation removing any correlation be-
tween the private key and execution time. For other base algorithms
where timing attacks exist, the library does not contain support for
quantizing internally, but software such as Matt Blaze’s [6] library
can be used with libfss.

The second type of timing attack is caused by the implementa-

tion, typically with the way errors are handled. If a complex opera-
tion aborts as soon as an error is detected, it provides an indication
as to which part of the input was invalid through the elapsed time.
For forward-secure verification for example, this could be used to
infer which signatures in a chain are valid and invalid by introduc-
ing intentional corruptions and timing the verification.

The solution to this type of attack is to postpone returning an
error as late as possible. libfss accomplishes this by continu-
ing after all non-fatal errors, and returning an error if any stage
of the operation fails. In addition, all operations for which failure
prevents continuing, such as memory allocation and conversion of
keys from encoded binary forms to internal structures, are moved
as far forward in the operations as possible so as to detect these er-
rors before any cryptographic operations have been performed on
the input. With these two steps, libfss does not leak any infor-
mation about which portion of a signature is invalid on error.

5. CONCLUSION
In this paper we have explored the practical performance char-

acteristics of forward-secure signature schemes. In the process, we
define a new framework for comparing signature schemes which
takes into account the application environment in computing an
amortized cost for basic operations. We use this tool to compare
several different FSS schemes built using generic constructions, as
well as several non-forward-secure signature schemes used as bases
for these constructions. We use our performance metrics to exam-
ine a number of example uses for forward-secure signatures, and
provide recommendations as to the optimal FSS scheme and con-
figuration to use for each of these applications.

Our empirical study of FSS performance shows that, despite key
generation and update operations which are significantly more ex-
pensive than non-forward-secure equivalents, the performance of
FSS is actually quite competitive if correctly used. In environments
such as a Certificate Authority, the overhead of FSS is almost non-
existent when costs are amortized. The greatest difference in per-
formance between FSS and traditional signature schemes occurs
when there are few signatures and verifications made by each key;
even in these cases, FSS performs only two to four times slower.

These results show concretely that forward-secure signatures are
very practical. Many applications which currently use traditional
signatures could be switched to using forward-secure signatures
with little penalty to performance, but an enormous improvement
to the amount of inconvenience faced on key exposure.

There are several directions for future work based on this study.
We have only looked at the performance of these generic FSS con-
structions using software implementations of the base signature
schemes. Many applications are now relying on hardware-based
cryptographic co-processors when making traditional signatures,
and the role these devices play in FSS needs to be explored. Our
comparison also focused only on generic constructions due to their
desirable property of being built upon well known and well trusted
traditional signatures. Nonetheless, the performance of the other
schemes described in Section 2 such as Bellare-Miner and Itkis-
Reyzin are also of interest, and in the future we hope to expand our
FSS reference implementation to include these schemes.

6. REFERENCES
[1] M. Abdalla and L. Reyzin. A new forward-secure digital

signature scheme. Advances in Cryptology – ASIACRYPT
2000, Lecture Notes in Computer Science, 1976:116–129,
Dec. 2000.



[2] R. Anderson. Two remarks on public-key cryptology From
Invited Lecture, Fourth ACM Conference on Computer and
Communications Security (April, 1997).
http://www.cl.cam.ac.uk/
TechReports/UCAM-CL-TR-549.pdf.

[3] ANSI X9.62-1998. Public key cryptography for the financial
services industry: Rhe elliptic curve digital signature
algorithm (ECDSA), 1998.

[4] M. Bellare and S. K. Miner. A forward-secure digital
signature scheme. Advances in Cryptology – CRYPTO ’99,
Lecture Notes in Computer Science, 1666:431–448, Aug.
1999.

[5] M. Bellare and B. S. Yee. Forward-security in private-key
cryptography. In Topics in Cryptology - CT-RSA ’03, The
Cryptographers’ Track at the RSA Conference 2003, 2003.

[6] M. Blaze and J. Lacy. Simple Unix time quantization
package, 1995.
http://islab.oregonstate.edu/documents/
People/blaze/quantize.shar.

[7] J. N. Bos and D. Chaum. Provably unforgeable signatures.
Advances in Cryptology – CRYPTO ’92, Lecture Notes in
Computer Science, 740:1–14, 1993.

[8] R. Canetti, O. Goldreich, and S. Halevi. The random oracle
methodology, revisited. In Proc. of the thirtieth annual ACM
symposium on Theory of computing (STOC ’98), 1998.

[9] R. Canetti, S. Halevi, and J. Katz. A forward-secure
public-key encryption scheme. In Proc. of the 21st Annual
IACR Eurocrypt conference (EUROCRYPT ’03), 2003.

[10] Certicom Research. SEC 2: Recommended elliptic curve
domain parameters, Sep. 2000.
http://www.secg.org/secg docs.htm.

[11] G. D. Crescenzo, N. Ferguson, R. Impagliazzo, , and
M. Jakobsson. How to forget a secret. STACS ’99, Lecture
Notes in Computer Science, 1563:500–509, 1999.

[12] T. Dierks and C. Allen. The TLS protocol. RFC 2246, IETF,
January 1999.

[13] W. Diffie and M. E. Hellman. Multiuser cryptographic
techniques. In AFIPS Conference Proceedings, volume 45,
pages 109–112, 1976.

[14] W. Diffie, P. C. van Oorschot, and M. J. Wiener.
Authentication and authenticated key exchanges. Designs,
Codes, and Cryptography, 2(2), 1992.

[15] Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-insulated public
key cryptosystems. In Proc. of the 20th Annual IACR
Eurocrypt conference (EUROCRYPT ’02), 2002.

[16] Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong key-insulated
signature schemes. In Proc. of the 6th Annual International
Workshop on Practice and Theory in Public Key
Cryptography (PKC ’03), 2003.

[17] A. Fiat and A. Shamir. How to prove yourself: Practical
solutions to identification and signature problems. Advances
in Cryptology - CRYPTO ’86, Lecture Notes in Computer
Science, 263:181–187, 1986.

[18] L. C. Guillou and J.-J. Quisquater. A “paradoxical”
identity-based signature scheme resulting from
zero-knowledge. Advances in Cryptology – CRYPTO ’88,
Lecture Notes in Computer Science, 403:216–231, Aug.
1988.

[19] C. Gunther. An identity-based key-exchange protocol. In
Proc. of the 7th Annual IACR Eurocrypt conference
(EUROCRYPT ’89), 1989.

[20] P. Gutmann. Secure deletion of data from magnetic and
solidstate memory. In Proceedings of 6th USENIX UNIX
Security Symposium. USENIX Association, July 1996. San
Jose, CA.

[21] G. Itkis and L. Reyzin. Forward-secure signatures with
optimal signing and verifying. Advances in Cryptology –
CRYPTO ’01, Lecture Notes in Computer Science,
2139:332–354, Aug. 2001.

[22] G. Itkis and L. Reyzin. SiBIR: Signer-base intrusion-resilient
signatures. Advances in Cryptology – CRYPTO ’02, Lecture
Notes in Computer Science, 2442, Aug. 2002.

[23] B. Kaliski. Timing attacks on cryptosystems. RSA Bulletin,
2, January 1996.

[24] P. C. Kocher. Timing attacks on implementations of
Diffie-Hellman, RSA, DSS, and other systems. Advances in
Cryptology – CRYPTO ’96, Lecture Notes in Computer
Science, 1109:104–113, 1996.

[25] A. Kozlov and L. Reyzin. Forward-secure signatures with
fast key update. In Proc. of the 3rd International Conference
on Security in Communication Networks (SCN ’02), 2002.

[26] H. Krawczyk. Simple forward-secure signatures from any
signature scheme. In Proc. of Seventh ACM Conference on
Computer and Communications Security, pages 108–115,
Nov. 2000.

[27] T. Malkin, D. Micciancio, and S. Miner. Efficient generic
forward-secure signatures with an unbounded number of
time periods. In Proc. of the 20th Annual IACR Eurocrypt
conference (EUROCRYPT ’02), 2002.

[28] R. C. Merkle. A digital signature based on a conventional
encryption function. Advances in Cryptology – CRYPTO ’89,
Lecture Notes in Computer Science, pages 428–446, 1989.

[29] National Institute of Standards and Technology. Digital
signature standard, FIPS 186-2, 2000.

[30] National Institute of Standards and Technology. Advanced
encryption standard, FIPS 197, 2001.

[31] NESSIE consortium. Portfolio of recommended
cryptographic primitives, February 2003.
http://www.cryptonessie.org.

[32] H. Ong and C. P. Schnorr. Fast signature generation with a
fiat-shamir-like scheme. In Proc. of the 8th Annual IACR
Eurocrypt conference (EUROCRYPT ’90), 1990.

[33] N. Provos. Encrypting virtual memory. In Proceedings of the
9th USENIX Security Symposium, pages 35–44. USENIX
Association, Aug. 2000. Denver, CO.

[34] R. Rivest, A. Shamir, and L. Adleman. A method for
obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120–126, Feb. 1978.

[35] D. X. Song. Practical forward secure group signature
schemes. In Proc. of the 8th ACM Conference on Computer
and Communications Security (CCS ’01), 2001.

[36] The OpenSSL Group. OpenSLL, Oct 2003.
http://http://www.openssl.org/.

[37] J. Viega, M. Messier, and P. Chandra. Network Security with
OpenSSL. O’Reilly & Associates, Inc., 2002.

[38] M. J. Wiener. Performance comparison of public-key
cryptosystems. CryptoBytes, 4(1), Summer 1998.


