Lattices and Homomorphic Encryption, Spring 2013

Instructors: Shai Halevi, Tal Malkin

Problem Set #4

March 12, 2013

Due March 26, 2013

1 Sampling Discrete Gaussians over \mathbb{Z}^n

In this question we show how to sample from the discrete Gaussian distribution over the integer lattice \mathbb{Z}^n .

- 1. Let \mathcal{D} be an arbitrary distribution with a finite support set X, and denote by p_{\max} the probability mass of the most likely element, $p_{\max} = \max\{\mathcal{D}(x) : x \in X\}$. Consider the following process (called *rejection sampling*):
 - (a) Draw a uniform element from the support $x \in_R X$,
 - (b) Toss a biased coin with head probability exactly $\mathcal{D}(x)/p_{\text{max}} \in [0, 1]$,
 - (c) If the coin comes out head then output x, else goto (a).

Prove that the output distribution of this rejection sampling process is exactly \mathcal{D} .

Hint. For any $x \in X$, analyze the conditional probability $\Pr[\text{output } x|\text{stop after 1st sample}]$. Use the identity $\Pr[A|B] = \Pr[A\&B]/\Pr[B]$.

- 2. Show that the number of samples taken by the rejection sampling procedure above is distributed according to a geometric distribution with parameter $p = 1/(p_{\text{max}} \cdot |X|)$.
- 3. For any $s \geq \eta_{2^{-k}}(\mathbb{Z})$, describe an efficient procedure that on input $c \in \mathbb{R}$ samples from a distribution statistically close to $D_{\mathbb{Z},s,c}$, the one-dimensional discrete Gaussian with center c (upto statistical distance $< 2^{-k}$).

Hint. Consider the distribution $D_{\mathbb{Z},s,c}$ conditioned on the outcome being closer to c than $s\sqrt{k}$. Namely $\mathcal{D}(x)$ is proportional to $D_{\mathbb{Z},s,c}(x)$ if $|x-c| < s\sqrt{k}$, and $\mathcal{D}(x) = 0$ otherwise. To show that \mathcal{D} is close to $D_{\mathbb{Z},s,c}$, you can use the fact that for $s \geq \eta_{\epsilon}(\mathbb{Z})$ we have

$$\Pr_{x \sim D_{\mathbb{Z},s,c}}[|x-c| > s\sqrt{k}] < 2e^{-\pi k} \cdot \frac{1+\epsilon}{1-\epsilon}$$

(no need to prove that fact). Then analyze the number of samples taken by rejection sampling for \mathcal{D} , showing that the probability of taking more than (say) $s \cdot k^2$ samples is smaller than 2^{-k} .

4. For any $s > \eta_{2^{-k}}(\mathbb{Z})$ and n > 0, describe an efficient procedure that on input $\vec{c} \in \mathbb{R}^n$ samples from a distribution statistically close to $D_{\mathbb{Z}^n,s,\vec{c}}$, the *n*-dimensional discrete Gaussian with center \vec{c} (upto statistical distance $< n \cdot 2^{-k}$).

Note that $\eta_{2^{-k}}(\mathbb{Z}) < \sqrt{k}$, so the procedure from this problem can be used to sample elements that are closer to \vec{c} than $k\sqrt{n}$ (with overwhelming probability).

2 Reduction Modulo \mathcal{L}_A^{\perp}

Fix parameters $n, q \ge \text{poly}(n), m \ge 2n \log q$, and a matrix $A \in \mathbb{Z}_q^{n \times m}$. Recall that we define

. .

$$\mathcal{L}_A^{\perp} \stackrel{\text{def}}{=} \{ \vec{x} \in \mathbb{Z}^m : A\vec{x} = 0 \pmod{q} \},\$$

and that \mathcal{L}_A^{\perp} is a rank-*m* lattice. We assume that *A* has rank *n* modulo *q* (i.e., its columns linearly span the entire \mathbb{Z}_q^n). Let $B = (b_1 b_2 \dots b_m)$ be an arbitrary basis for \mathcal{L}_A^{\perp} .

- 1. Prove that for any two distinct points in the basic cell of B, $\vec{v}_1, \vec{v}_2 \in \mathcal{P}(B)$, $\vec{v}_1 \neq \vec{v}_2$, it holds that $A\vec{v}_1 \neq A\vec{v}_2 \pmod{q}$.
- 2. Prove that if \mathcal{D} is the uniform distribution over the integer vectors in $\mathcal{P}(B)$, then drawing $\vec{x} \leftarrow \mathcal{D}$ and computing the syndrome $\vec{y} = A\vec{x} \mod q$ yields a uniform distribution over \mathbb{Z}_{q}^{n} .
- 3. Let $s \geq \eta_{2^{-k}}(\mathcal{L}_A^{\perp})$. Prove that drawing from a discrete Gaussian $\vec{x} \leftarrow D_{\mathbb{Z}^m,s}$ and computing the syndrome $\vec{y} = A\vec{x} \mod q$, yields a distribution which is close to uniform over \mathbb{Z}_q^n upto statistical distance at most 2^{-k} .