
Lattices and Homomorphic Encryption, Spring 2013 Instructors: Shai Halevi, Tal Malkin

A Special “Easy” Lattice
March 12, 2013

In this note we cover a few aspects of the special easy lattice of Micciancio-Peikert [1], which
is used in their trapdoor construction. Below let n be the security parameter and let q be another
parameter, polynomial in n. Denote k = |q| = O(log n) and let the binary representation of q be
qk−1 . . . q1q0, namely the qi’s are bits such that q =

∑k−1
i=0 qi2

i.

1 A Small Basis

A. Consider the vector ~g = 〈1, 2, 4, . . . , 2k−1〉 ∈ Zk, and the lattice L⊥(~g) = {~x ∈ Zk : 〈~g, ~x〉 = 0
(mod q)}. Prove that the columns of the following matrix Sk form a basis for L⊥(~g):

Sk
def
=



2 q0
−1 2 q1

−1 2 q2
. . .

. . .

−1 2 qk−2
−1 qk−1


(1)

Proof. It it easy to see that ~g · Sk = 0 (mod q). Hence all the columns of Sk are in L⊥(~g), which
means that L(Sk) ⊆ L⊥(~g).

One way to see that the lattice L(Sk) in fact equals L⊥(~g) is to compute the determinants. On
one hand the determinant of L⊥(~g) is exactly q, using the argument from class about a “full rank
1× k system of equations” modulo q. On the other hand, by iteratively adding twice row i+ 1 to
row i (starting from the bottom row and going up), we can transform Sk into a matrix of the form

0 q
−1 0 ∗

−1 0 ∗
. . .

. . .

−1 0 ∗
−1 ∗


,

so clearly it has determinant ±q. Hence L(Sk) cannot be a proper sublattice of L⊥(~g), so they
must be equal.

B. Consider the n× nk matrix

G
def
=


−~g−

−~g−
. . .

−~g−

 (2)

Describe a basis for the lattice L⊥(G)
def
= {~x ∈ Znk : G~x = 0 (mod q)}. What is the determinant

of this lattice?

Answer. A basis for L⊥(G) with determinant qn is

 Sk
. . .

Sk

 .

1

2 Small Integer Solutions

A. For any u ∈ Zq, denote the u-coset of L⊥(~g) by L⊥u (~g)
def
= {~x ∈ Zk : 〈~g, ~x〉 = u (mod q)}.

Describe a poly(n)-time algorithm that given u ∈ Zq outputs a vector ~x ∈ L⊥u (~g) of length at most√
k.

Answer. Denote the binary representation of u by uk−1 . . . u1u0, then the vector ~x = 〈u0, u1, . . . , uk−1〉
(that has Euclidean length ≤

√
k) satisfies 〈~g, ~x〉 =

∑
i ui2

i = u, hence ~x ∈ L⊥u (~g).

B. Recall that the discrete Gaussian distibution with parameter s over a lattice (or coset) L ⊂ Rd,
outputs each point ~x ∈ L with probability proportional to the Gaussian measure ρs(~x). Namely,

DL,s(~x)
def
=

ρs(~x)

ρs(L)
, where ρs(~x)

def
= exp

(
− π‖~x‖2/s2

)
and ρs(L) =

∑
~u∈L

ρs(~u)

Describe a poly(n)-time algorithm that given u ∈ Zq samples from the distribution DL⊥u (~g),s, for a
small parameter s. How small can you make s while still keeping the algorithm poly(n)-time?

Answer. We will show a very simple algorithm that works for the parameter s = 1 (say). The
algorithm just keeps choosing at random vectors from the Gaussian distribution over the integers
~x ← DZk,s until it gets a vector satisfying 〈~g, ~x〉 = u (mod q). Clearly this yields the right
distribution, it is only left to prove that it runs in expected poly(n) time.

For the proof, let us partition the integer lattice Zk into little cubes of size 2k, namely for every
even vector ~z = 〈z1, . . . , zk〉 ∈ 2Zk we consider the cube C~z = {~x : xi ∈ {zi, zi + 1}∀i} . We view
the process of choosing ~x← DZk,s as first choosing a cube (by the induced distribution) and then
choosing ~x from the conditioned distribution on this cube.

Note that if the cube is not too far from the origin, then the conditional distibution over the
cube is not too far from uniform. Assume (for simplicity of notations) that all the entries in ~z are
non-negative, then the ratio between probability mass of the most likely point in C~z (which is the
point ~z itself) and that of the least likely point (namely ~z +~1) is

exp(−π‖~z/s‖2)
exp(−π‖(~z +~1)/s‖2)

= exp

(
π

s2
·
∑
i

((zi + 1)2 − z2i)

)
= exp

(
π

s2
·
∑
i

(2zi + 1)

)

Since the zi’s are integers then
∑
zi ≤

∑
z2i , and therefore this ratio is bounded by

exp

(
π

s2
·
∑
i

(2zi + 1)

)
≤ exp

(π
s2
· (2‖~z‖2 + k)

)
(By symmetry, the same bound holds also when ~z has negative entries, in which case ~z in the above
expression is replaced by the point in C~z closest to the origin.)

Next, observe that when choosing a random ~x ← DZk,s, the expected suqared length of ‖x‖
is at most s2k/2π. Hence there is a constant probability to get (say) ‖~x‖2 ≤ s2k/π. Thus, when
choosing a cube according to the induced distribution there is a constant probability to choose one
where the ratio between the probability mass of the most likely and least likely points is bounded
by

exp

(
π

s2
· (2s

2k

π
+ k)

)
= exp

(
k(2 +

π

s2
)
) (a)

< exp(6k)
(b)
< (2q)9,

where Inequality (a) follows from s = 1 and Inequality (b) follows from exp(6k) = (2k)6/ ln 2 < (2q)9.
Below we call cubes that satisfy this bound “good cubes.”

2

Last, observe that as ~x ranges over all the 2k points inside one small cube, the value of the inner
product 〈~g, ~x〉 mod q ranges over all of Zq, with each value in Zq obtained either once or twice.
(This follows from the structure of ~g, from the fact that we only vary the LSB’s of the entries in
~x, and from the fact that 2k < 2q.) Hence when we choose ~x from the conditional distribution
over a good cube, the ratio between the probability masses of the most likely and the least likely
values of 〈~g, ~x〉 mod q is bounded by 2 · (2q)9. Since the most likely value of 〈~g, ~x〉 mod q ∈ Zq has
probability at least 1/q, then the least-likely value is obtained with probability at least (2q)−10 in
such good cubes.

We are now ready to complete the proof. We have shown that there is an event with constant
probability (i.e., chosing a good cube), such that conditioned on this event every value of 〈~g, ~x〉 mod
q is obtained with probability at least (2q)−10. Hence for every input value u ∈ Zq, the overall
probability of getting 〈~g, ~x〉 = u (mod q) is at least Ω(q−10), so the expected number of samples is
bounded by O(q10), which is polynomial in n.

C. Describe a poly(n)-time algorithm that given ~u ∈ Zn
q outputs a vector in L⊥~u (G)

def
= {~x ∈

Znk : G~x = ~u (mod q)} of size at most
√
nk (for the matrix G from Equation 2). Also describe a

poly(n)-time algorithm that given ~u ∈ Zn
q samples from DL⊥

~u
(G),s, for a small parameter s.

Answer. For the first algorithm, given a vector ~u we go over all the entries in ~u, and for each entry
ui use the algorithm from Part A to find a vector ~xi such that 〈~g, ~x+ i〉 = ui (mod q). Then the
final vector is just the concatenation of all the ~xi’s.

Similarly for the second algorithm, for each entry ui we choose at random ~x1 ← DL⊥u (~g),s using
the algorithm from Part B, and then concatenate all the ~xi’s.

3 Learning with Errors

A. Describe a poly(n)-time algorithm that solves the learning with errors problem with respect to
~g. Namely, for a secret scalar s, the algorithm is given as input a vector ~u = s~g + ~e mod q where ~e
is a “small error vector” with entries smaller than q/8 in absolute value. Your algorithm needs to
recover the secret s.

Answer. Since q is polynomial in n, we can do exhaustive search,1 going over all possible values of
s ∈ Zq and outputting the first one which is consistent with the received vector ~u. It is only left to
show that this value matches the secret s that was used to generate ~u.

To see this, let s′ ∈ Zq be some different value, s 6= s′, and we show that s′ cannot be consistent
with ~u. Denote δ = s − s′ mod q, where we think of the mod opeation as mapping integers into
the interval [−q/2, q/2). Also for i = 0, 1, . . . , k − 1 denote δi = 2i · δ mod q. Then since k ≥ log2 q
there must be some index i such that |δi| ≥ q/4. For this index i, we know that ui = 2is+ ei where
|ei| < q/8. Hence ui − 2is′ = 2i(s− s′) + ei = δi + ei. But |δi| ≥ q/4 and |ei| < q/8, so the distance
between ui and 2i · s′ is larger than q/8, hence s′ cannot be consistent with ~u.

B. Describe a poly(n)-time algorithm that inverts the function LWEG(~s,~e) = ~sG+~e mod q, where

~s ∈ Zn
q and ~e ∈

[
−
⌊
q−1
8

⌋
,
⌊
q−1
8

⌋]nk
.

Answer. We break ~u into n subvectors of size k each ~u1 . . . ~un. For each subvector ~ui we use the
algorithm from Part A to find a scalar s such that ~ui = s~g + ~ei for a small ei, then we have the
vector ~s = 〈s1, s2, . . . , sn〉, and we recover ~e as ~e = ~u− ~sG mod q.

1Alternatively, there is a simple binary-search strategy that would work also for super-polynomial values of q.

3

References

[1] Daniele Micciancio and Chris Peikert. Trapdoors for Lattices: Simpler, Tighter, Faster,
Smaller, In EUROCRYPT 2012, LNCS vol. 7237, pages 700-718, Springer, 2012.

4

