
Lattices and Homomorphic Encryption, Spring 2013 Instructors: Shai Halevi, Tal Malkin

LWE Hardness
March 12, 2013

We sketch the proof due to Regev [Reg09] and Peikert [Pei09] that (under certain conditions)
it is possible to relate the average-case hardness of the learning with errors problem (LWE) to the
worst-case hardness of bounded distance decoding in a given lattice (BDD).

Preliminaries. We have the following parameters:
n - security parameter.
α - noise parameter (= 1

poly(n)).

q - modulus (� 1
α , sometimes even q = exp(n)).

We use Ds to denote the continuous Gaussian distribution with parameter s, and DL,s to denotes
a discrete distribution over a lattice (or coset of a lattice) L, such that every vector ~z ∈ L has
probability mass proportional to Ds(~z).

1 The Main Lemma

In addition to an oracle that solves LWE, the reduction from BDD in a lattice L to the average-
case LWE, also needs access to an oracle that samples short vectors in L∗. (Regev [Reg09] and
Peikert [Pei09] show how to construct such a sampling oracle in specific settings, see Section 3).
Additionally it relies on the following properties of the LWE error distribution:

• The LWE error distribution Φαq is a continuous one-dimensional Gaussian, which is a pro-
jection of the spherical n-dimensional distribution Dαq onto its first coordinate.

• The distribution Dαq is smooth in the following sense: If L is some lattice (or coset of a
lattice) with λn(L)� αq, then if we choose ~x← DL,r and ~y ← Ds such that r2 + s2 = (αq)2

then the induced distribution on ~x+ ~y is close to the continuous distribution Dαq.

Lemma 1 ([Reg09]). There is an efficient algorithm that takes as input a basis B of an n-
dimensional lattice L = L(B), another parameter r � q

λ1(L) and a point ~x ∈ Rn such that

dist(x,L) < αq√
2r

and has access to two oracles:

• A “global” solver for LWE[n, α, q] (“global” in the sense that it is unrelated to the input lattice).

• A “lattice specific” sampler from DL∗,r.

The algorithm finds (with overwhelming probability) the (unique) point ~v ∈ L closest to ~x.

2 Proof Sketch of Lemma 1

Let ~v ∈ L be the closest point to ~x in L and let ~t ∈ Zn be the coefficients of ~v when expressed in

basis B (i.e., ~v = B~t) and denote ~s
def
= ~t mod q. We show a procedure that uses the sampler for

D̃L∗,r to generate instances of the distribution LWE~s. Then, we use the LWE solver to find ~s. (Note
that ~s was not chosen uniformly at random in this case, but we previously showed a random self
reduction for LWE from a random ~s to any specific ~s.) Later we show how from ~s one can find ~t
thereby solving BDD.

1



LWE-Generate(B, ~x) (With access to D̃L∗,r)

1. Draw a sample ~y ← D̃L∗,r. Let ~a be the coefficients of ~y in basis B∗ (i.e. ~a = BT~y).

2. Draw an error term e← Φ α
2
√
π

.

3. Output (~a, b = 〈~x, ~y〉+ e mod q).

Claim 1. The output of LWE-Generate is statistically close to the LWE distribution with secret ~s,
LWE~s, except that the error parameter is some β ≤ α.

Proof. We need to show that (A) ~a is close to uniform in Znq , and (B) once ~a is fixed, ~b = 〈~s,~a〉+Φβq

for some β ≤ α.

(A.) Consider the lattice q · L∗ and all its qn cosets

~a-coset = {B∗~a+ qL∗} = {B∗~z : ~z = ~a mod q}

The vector ~a output by the LWE-Generate procedure is exactly the coset of ~y. Due to our choice
of parameters, all cosets are (almost) equally likely. Indeed, since r � q

λ1(L) ≥
qλn(L∗)

n then D̃L∗,r
is nearly uniform among the cosets.

(B.) Conditioned on any fixed ~a ∈ Znq , the vector ~y is chosen from the discrete distribution on

the ~a-coset, ~a+DqL∗,r. Denoting ~w
def
= ~x− ~v we have

〈~x, ~y〉 = 〈~v + ~w, ~y〉
= 〈~v, ~y〉+ 〈~w, ~y〉
= 〈B~t, ~y〉+ 〈~w, ~y〉
= 〈~t, BT~y〉+ 〈~w, ~y〉
= 〈~s,~a〉+ 〈~w, ~y〉 mod q

hence b = 〈~s,~a〉+ 〈~w, ~y〉+ e mod q. Notice that ~s, ~a and ~w are fixed and the random part is just ~y
and e.

Recall that Φ α
2
√
π

is the projection of D α
2
√
π

onto the first coordinate, namely 〈~e1,D α
2
√
π
〉 and

since D is spherical then this is also the same as 〈~u,D α
2
√
π
〉 for any other unit vector ~u. In particular,

Φ α
2
√
π
≡ 〈~w,D α

2
√
π
〉 1
||~w|| ≡ 〈~w,D α

2
√
π||~w||
〉.

Hence 〈~w, ~y〉 + e ≡ 〈~w, ~y〉 + 〈~w, ~z〉 = 〈~w, ~y + ~z〉 where y ∈R D~a+qL∗,r and z ∈R Ds where
s = α

2
√
π||~w|| . Now ||~w|| is “short” so s is “large”. The parameters r, s are chosen large enough so that

Dq~a+L∗,r is close to the continuous Dt where t =
√
r2 + s2. Therefore 〈~w, ~y〉+ e ≈ 〈~w,Dt〉 = Φ||~w||·t

and the parameters are such that ||~w|| · t ≤ αq.

To solve BDD for ~x we can apply the LWE-solver with samples from LWE-Generate to find the
vector ~s. However, to solve BDD we need to find ~t (recall ~s = ~t mod q). To do this, first observe
that ~v = B~t = B~s + B(q~z) for some ~z ∈ Zn and consider ~x′ = ~x−B~s

q = ~x−~v
q + B~z. Notice that by

this calculation, the vector ~x′ is at distance ||~w||q (where ~w = ~x − ~v) from the lattice (specifically

the point B~z). If we could find the closest lattice point to ~x′ we would have ~z and therefore also ~v.
To do this just repeat the above argument again and again and at each iteration the distance from
the lattice is reduced by a factor of q. After n such iterations we can solve the problem by using,
e.g., Babai’s nearest plane algorithm.

2



3 The Lattice-Specific Sampler

Regev [Reg09] described a quantum algorithm for implementing the lattice-specific sampling oracle,
thus obtaining a quantum reduction of BDD to LWE. Peikert observed [Pei09] that in some cases the
sampler can also be implemented using a standard (non-quantum) efficient algorithm, specifically
when the parameter α is small enough relative to λ1(L). This yields a reduction from the problem
of approximating the number λ1(L) to LWE: Roughly we try the reduction with different size of α
until it fails, and that value of α is an approximation of λ1(L). Peikert’s observation is based on
the following theorem of Gentry et al. [GPV08]:

Theorem 1 (Informal). Given a basis B = (b1 . . . bn) for a lattice L = L(B), it is possible to
sample efficiently from the discrete Gaussian distribution distribution DL,s for a parameter s ≥
poly(n) ·maxi ‖bi‖.

(The poly(n) term can be as small as
√
n.) Moreover, using the LLL algorithm we can find

a basis B∗ for L∗ such that maxi ‖b∗i ‖ ≤ 2n/2λ1(L∗) ≤ 2n/2n/λ1(L). Hence we can use the GPV
sampler to sample from DL∗,r whenever (say) r ≥ 2n/λ1(n).

Theorem 2 ([Pei09] Let α = 1/poly(n), γ = n/α and q = exp(n). Given oracle access to a solver
for LWE[m,α, q). and any basis B for an n-dimensional lattice L = L(B), we can approximate the
number λ1(L) to within a γ factor.

Proof. We first use LLL to find an approximation β such that λ1(L) ≤ b ≤ 2n/2λ1(L). For
i = 0, 1, 2, . . . we define βi = β/γi.

Below we describe a procedure to distinguish the two cases λ1(L) < βi+1 and λ1(L) ≥ βi.
Running this procedure and denoting by i∗ the first index in which the procedure outputs “λ1(L) ≥
βi”, it is clear that βi∗ is a λ approximation, as needed. I.e., if λ1(L) ∈ [βi+1, βi) for some i, the
we would output either βi+1 or βi.

Distinguishing procedure. The following gets as input a basis B or L = L(B) and a number
d, and it needs to distinguish the two cases λ1(L) < d and λ1(L) ≥ d · γ.

Distinguish(B, d).

0. Set d′ = d ·
√
n/2

1. For j = 1 to N = poly(n) do:

(i) Draw wi uniformly at random from the n dimensional sphere of radius d′;

(ii) Reduce w modulo P(X) to get x = w mod P(B);

(iii) Run the algorithm from Lemma 1 on input basis B, parameter r = q ·
√

2n/(dγ) and point x.
For the two oracles use:

— The LWE solver that you have access to as the “global” oracle

— The GPV sampler using an LLL-reduced basis for B∗, for the “lattice specific” oracle

(iv) Let v be the point that the algorithm from Lemma 1 returns (set v = 0 if the algorithm fails).
If x− w = v then record a vote for “λ1(L) ≥ dγ”, else record a vote for “λ1(L) < d”.

2. Output “λ1(L) ≥ dγ” if all votes say “λ1(L) ≥ dγ”, else output “λ1(L) < d.

3



Analysis. We show that (a) when λ1(L) ≥ dγ then all the conditions of Lemma 1 are satisfied
and the closest lattice point to x is x− w, so in this case the algorithm from Lemma 1 will return
x− w, and (b) when λ1(L) < d then the view of the algorithm from Lemma 1 does not determine
a unique w, so with non-negligible probability it will return a point different from x− w.

Case (a): λ1(L) ≥ dγ. Recall that the distance between x and the lattice L is less than d
√
n/2 =

d · αγ·q√
nq
√
2n

= αq√
2r

, as needed for the lemma. Also we have r = q
√
2n
dγ > q

√
2n

λ1(L) . Finally, since

q = exp(n) then the GPV sampler gives good enough samples. Hence the reduction works and we
always get the unique closes point to x, which is x− w.

Case (b): λ1(L) < d. Let y be the shortest nonzero vector in L, ‖y‖ = λ1(L) < d, then with
non-negligible probability both x − w and x − w − y are within distance d′ from x. Hence both
are equally likely given the view of the algorithm, so it will output x−w with probability at most
1/2.

References

[GPV08] Craig Gentry, Chris Peikert and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions, In 40th Annual ACM Symposium on Theory of
Computing, STOC 2008, pages 197–206. ACM, 2008.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In 41st Annual ACM Symposium on Theory of Computing, STOC
2009, pages 333–342. ACM, 2009.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
JACM, 56(6), 2009.

4


