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We sketch the proof due to Regev [Reg09] and Peikert [Pei09] that (under certain conditions)
it is possible to relate the average-case hardness of the learning with errors problem (LWE) to the
worst-case hardness of bounded distance decoding in a given lattice (BDD).

Preliminaries. We have the following parameters:

n - security parameter.
. _ 1

« - noise parameter (= m).

g - modulus (> 1, sometimes even g = exp(n)).

We use Dy to denote the continuous Gaussian distribution with parameter s, and Dy, s to denotes
a discrete distribution over a lattice (or coset of a lattice) L, such that every vector Z' € L has
probability mass proportional to Ds(Z2).

1 The Main Lemma

In addition to an oracle that solves LWE, the reduction from BDD in a lattice £ to the average-
case LWE, also needs access to an oracle that samples short vectors in £*. (Regev [Reg09] and
Peikert [Pei09] show how to construct such a sampling oracle in specific settings, see Section 3).
Additionally it relies on the following properties of the LWE error distribution:

e The LWE error distribution ®,4 is a continuous one-dimensional Gaussian, which is a pro-
jection of the spherical n-dimensional distribution D,, onto its first coordinate.

e The distribution D,, is smooth in the following sense: If £ is some lattice (or coset of a
lattice) with A\, (£) < ag, then if we choose & < D, and i < D; such that r% + s? = (aq)?
then the induced distribution on & + % is close to the continuous distribution Dyg.

Lemma 1 ([Reg09]). There is an efficient algorithm that takes as input a basis B of an n-
dimensional lattice L = L(B), another parameter r > ﬁ and a point £ € R™ such that
dist(z, £) < 2= and has access to two oracles:

V2r
o A “global” solver for L\WE[n, «, q] (“global” in the sense that it is unrelated to the input lattice).

o A “lattice specific” sampler from Dp« ..

The algorithm finds (with overwhelming probability) the (unique) point U € L closest to Z.

2 Proof Sketch of Lemma 1

Let ¥ € £ be the closest point to Z in £ and let ¢ € Z" be the coefficients of ¥ when expressed in

basis B (ie., ¥ = Bt_> and denote 5 % F'mod q. We show a procedure that uses the sampler for

D+, to generate instances of the distribution LWEgz. Then, we use the LWE solver to find 5. (Note
that § was not chosen uniformly at random in this case, but we previously showed a random self
reduction for LWE from a random & to any specific 5.) Later we show how from 5 one can find ¢
thereby solving BDD.



LWE-Generate(B, 7) (With access to D« )
1. Draw a sample ¥ + [)g*,r. Let @ be the coefficients of i in basis B* (i.e. @ = BTY).

2. Draw an error term e <+ ®_o .

3. Output (@,b = (Z,y) + e mod q).

Claim 1. The output of LWE-Generate is statistically close to the LWE distribution with secret S,
LWEg, except that the error parameter is some 3 < .

—

Proof. We need to show that (A) @ is close to uniform in Zy, and (B) once @ is fixed, b = (5, @) + g,
for some § < a.

(A.) Consider the lattice ¢ - £* and all its ¢" cosets
d-coset = {B*d + qL*} = {B*Z: Z=d mod ¢}

The vector @ output by the LWE-Generate procedure is exactly the coset of y. Due to our choice
of parameters, all cosets are (almost) equally likely. Indeed, since r > ﬁ > ‘M"T(E) then Dpx
is nearly uniform among the cosets.

B. Conditioned on any fixed @ € Zn, the vector is chosen from the discrete distribution on
q Yy
the CL-COSGt, a+ D L* . Denoting w d__ef T — U we have
q 2

(7, 9) =

—

(U + W, 7)

= (U, 9) + (@, %)
= (Bt.g) + (@, 7)
(t

= (8

£, BTij) + (0, §)
5,d) + (W,y) mod ¢

hence b = (5,d@) + (W, §) + e mod q. Notice that §, @ and @ are fixed and the random part is just i
and e.
Recall that <I> = is the projection of D == onto the first coordinate, namely <e‘i,D%> and

™

since D is spherlcal then this is also the same as (i, Di) for any other unit vector @. In particular,

o = (@ Do) gy = (0, D)
Hence (), 37> +e = (W,y) + (W,2) = (W,y+ 2) where y €r Dgyqr+,» and z €gr Ds where

s = ﬁll?ﬂ“” Now ||| is “short” so s is “large”. The parameters r, s are chosen large enough so that

Dya+ v is close to the continuous D; where t = v/r2 + s2. Therefore (0, 7) + e ~ (0, D;) = |-t
and the parameters are such that ||| -t < ag. O

S

To solve BDD for & we can apply the LWE-solver with samples from LWE-Generate to find the
vector §. However, to solve BDD we need to find ¢ (recall §= £ mod q). To do this, first observe

that 7 = B = B§ + B(q?Z) for some Z € Z" and consider 2/ = %’ = %ﬁ + BZ. Notice that by

this calculation, the vector #’ is at distance @ (where W = & — ¥) from the lattice (specifically

the point BZ). If we could find the closest lattice point to 7' we would have 7 and therefore also .
To do this just repeat the above argument again and again and at each iteration the distance from
the lattice is reduced by a factor of ¢q. After n such iterations we can solve the problem by using,
e.g., Babai’s nearest plane algorithm.



3 The Lattice-Specific Sampler

Regev [Reg09] described a quantum algorithm for implementing the lattice-specific sampling oracle,
thus obtaining a quantum reduction of BDD to LWE. Peikert observed [Pei09] that in some cases the
sampler can also be implemented using a standard (non-quantum) efficient algorithm, specifically
when the parameter « is small enough relative to A;(£). This yields a reduction from the problem
of approximating the number A;(£) to LWE: Roughly we try the reduction with different size of «
until it fails, and that value of « is an approximation of \;(L). Peikert’s observation is based on
the following theorem of Gentry et al. [GPVO08]:

Theorem 1 (Informal). Given a basis B = (by...b,) for a lattice L = L(B), it is possible to
sample efficiently from the discrete Gaussian distribution distribution Dr s for a parameter s >
poly(n) - max; ||b;||.

(The poly(n) term can be as small as y/n.) Moreover, using the LLL algorithm we can find
a basis B* for £* such that max; ||b| < 27/2\1(L*) < 2"/2n/A\1(L). Hence we can use the GPV
sampler to sample from Dz, whenever (say) r > 2" /A1 (n).

Theorem 2 ([Pei09] Let aw = 1/poly(n), v = n/a and ¢ = exp(n). Given oracle access to a solver
for LWE[m, a, q). and any basis B for an n-dimensional lattice L = L(B), we can approzimate the
number \1 (L) to within a 7y factor.

Proof. We first use LLL to find an approximation § such that A\ (£) < b < 2"/2)\{(L). For
i=0,1,2,... we define §; = 3/v;.

Below we describe a procedure to distinguish the two cases A\(£) < Biy1 and A\ (L) > ;.
Running this procedure and denoting by i* the first index in which the procedure outputs “\; (L) >

7, it is clear that f;« is a A approximation, as needed. ILe., if \{(£) € [Bi+1, 5;) for some 7, the
we would output either ;11 or 5;.

Distinguishing procedure. The following gets as input a basis B or £ = L£(B) and a number
d, and it needs to distinguish the two cases A1 (£) < d and A\ (L) > d - ~.

Distinguish(B, d).

0. Set d = d - /n/2

1. For j =1 to N = poly(n) do:

(i) Draw w; uniformly at random from the n dimensional sphere of radius d’;
(ii) Reduce w modulo P(X) to get x = w mod P(B);

(iii) Run the algorithm from Lemma 1 on input basis B, parameter r = ¢-+/2n/(d7y) and point x.
For the two oracles use:
— The LWE solver that you have access to as the “global” oracle
— The GPV sampler using an LLL-reduced basis for B*, for the “lattice specific” oracle

(iv) Let v be the point that the algorithm from Lemma 1 returns (set v = 0 if the algorithm fails).
If x — w = v then record a vote for “\1(L£) > dv”, else record a vote for “A\1(L£) < d”.

2. Output “A (L) > dvy” if all votes say “A\1(L) > dv”, else output “A\; (L) < d.



Analysis. We show that (a) when A\i(£) > dy then all the conditions of Lemma 1 are satisfied
and the closest lattice point to x is * — w, so in this case the algorithm from Lemma 1 will return
x —w, and (b) when \;(£) < d then the view of the algorithm from Lemma 1 does not determine
a unique w, so with non-negligible probability it will return a point different from z — w.

Case (a): A\1(L) > dvy. Recall that the distance between x and the lattice £ is less than dy/n/2 =

. \/?O:;\.;% = %, as needed for the lemma. Also we have r = q;{?‘ > f\:/(% Finally, since

q = exp(n) then the GPV sampler gives good enough samples. Hence the reduction works and we
always get the unique closes point to xz, which is ¢ — w.

Case (b): A(L) < d. Let y be the shortest nonzero vector in L, |ly]| = A1(L) < d, then with
non-negligible probability both # — w and z — w — y are within distance d’ from z. Hence both

are equally likely given the view of the algorithm, so it will output x — w with probability at most
1/2. O
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